Cooperation Layers in Agent-Enabled Business Process Management

Ermolayev, V. A., Plaksin, S. L.
Dept. of Mathematical Modelling and IT,
Zaporozhye State University
{eva, psl}@zsu.zp.ua (normal business hours)
Business Lunch Delivery Service (B2B)
Clients: SME in a City district
Business Lunch Delivery Service (B2B)
Clients: SME in a City district
Business Lunch Delivery Service (B2B)

Clients: SME in a City district

Scenario is characterized by intrinsic distributedness, dynamic character and uncertainty:

- Not possible to plan the delivery statically (customer orders are not predictable, BLDS is an open organization - DU)

- No one is capable to perform and even to plan the whole delivery flow on its own (possibly a car repair or a speciality order will be required)

- Activities already allocated may result in failure (e.g., traffic, car is broken, the cooks are on strike, …) – corrective actions needed

Why agents: autonomy, situatedness, reactivity, proactivity, adaptability

BLDS units: **self-interested**, Can’t do without **cooperation**
The Emphases of the Talk

- **Framework in a Nutshell:** A proposal of a Layered Approach to the design of agent-based architectures and distributed intelligent software systems for Business Process Management and Performance

- **Our contributions:** What have we done already to provide “plug-ins” to the Framework Slots at different layers

- **Widely accepted and standardized solutions:** What makes the framework open to heterogeneous solutions

- **Conclusions:** What are the results, the lessons learned?

- **Motivation:** Why the research in agent-enabled cooperative business process management and performance is important? – just few slides to justify the answer…
Proposal: Conceptual Framework

Co-operation Models Layer

- Task Performance
 - Activity Delegation and Coalition Formation
 - Order of Activities within the Task
- Co-ordination
 - Capability Estimations
- Monitoring
 - Credibility Assessment
 - Organizational Unit Performance

Interoperability Layer

- Operational
 - Interaction Protocols
 - Conversation Patterns and Parametric Feedbacks
- Semantic
 - Shared Concepts in the Form of Ontologies

Communication Layer

Transport Layer
Cooperation Models Layer: Slots and Plug-ins

Slots

Task Performance
- Organization Model
- Functional System/Component Model
- Task Model

Coordination
- Activity allocation and dynamic task coalition formation mechanism
- Mechanism for coordination of the flow of activities within a task

Monitoring, learning from experience
- Fellow Capability Assessment Mechanism
- Fellow Credibility Assessment Mechanism
- Organizational Unit Performance Monitoring Mechanism

Plug-ins
On the higher level Proxy is viewed as a functional component. It expands to the functional system on the lower level of organization.

- Proxies “wrap” respective organizational units (MAS) and are the representative members in the higher level units (MAS)
Cooperation Models Layer: **Functional System**

- **Actors within organization/unit** are considered to be functional (or reactive) components.
- The same model is used for a functional system as far as an actor may expand into respective unit at the lower organizational level.
- **Capabilities are implemented as macro-model programs/methods one per activity**
- A component may:
 - **Accept** incoming tasks/activities from the environment
 - **Generate** new tasks/activities in response to environmental events
 - **Reject** incoming tasks/activities
 - **Delegate** activities to subordinates or peers (allocate via negotiation or by directive)
 - **Perform** activities
Cooperation Models Layer: Task

Task – partially ordered set of activities of varying granularity
Granularity: \(w^i \) for A – atomic, for B - non-atomic

\[T = \{ w^1, w^2, \ldots, w^i, \ldots, w^k \} \]

Task:
- \(w^i \) - atomic
- \(w^i \) - needs results of \(w^1, w^2 \)
- \(w^i \) - *Parameters* \(X^i \) *Results’ Templates* \(Y^i \)
 - comply to my understanding of \(w^i \)
- \(w^i \) - not capable to perform myself
- \(w^i \) - believe that B, C, D are capable - need to allocate
- \(w^i \) - have the certain **Budget**, can delegate with the certain **Price**
- \(w^i \) - results needed before the **Deadline**

Cascade decomposition and execution
by autonomous components at run-time

Task:
- \(w^i \) - non-atomic, comprises
- \(w^i \) - can’t perform now, need results of \(w^j, w^l \) before
- \(w^i \) - need to spend certain **Effort** to fit the **Deadline**

\(w^i \) - have the certain **Budget**, can delegate with the certain **Price**

PLP
Cooperation Models Layer: **Task**

Activity Results’ **Desirability**

Effort and Capacity

\[w = (\text{DeliverPizza}, X, Y) \]

\[
\text{des}_w(t, d_w) = \begin{cases}
 tdf(t), & t \leq d_w \\
 0, & t > d_w
\end{cases}
\]

Budget

Price (trade-off)

Incentive

Time

Duration

Deadline

As many as needed

Limited

Unlimited

Capacity – how many pizzas can be delivered by A’s delivery units to a certain location per unit time interval (e.g., 1 hour, 1 day…)

Effort (Capacity Share) – which part of A’s delivery units will be busy to accomplish the activity within desired **Duration**

Compute **Capacity Share**

A?
Cooperation Models Layer: **Coordination**

Cooperation models *(plug-ins)*:

- Activity allocation and dynamic task coalition formation
- Coordination of the flow of activities within a task
Cooperation Models Layer: **Coordination**

Activity Allocation and Dynamic Task Coalition Formation

Social laws:
- Relative cooperation commitment
- Activity arrangement convention
- Results delivery commitment

... authors are available at a coffee break for details...

Even more details may be found at:
http://www.zsu.zp.ua/racing/list/e-pubs.htm
Coordination: Dynamic Task Coalition generates Workflow on the fly

Source: Our example from UkrPROG’2000 paper

Pre-planning: eg., WfMC PDL, Petri Net, ..

On-the-Fly: presented approach

Coordination: Dynamic Task Coalition generates Workflow on the fly

Pre-planning: eg., WfMC PDL, Petri Net, ..

On-the-Fly: presented approach

Source: Our example from UkrPROG’2000 paper
Coordination: Dynamic Task Coalition generates Workflow on the fly

Source: Our example from UkrPROG’2000 paper

Pre-planning: eg., WfMC PDL, Petri Net, ..

On-the-Fly: presented approach
Coordination: Dynamic Task Coalition generates Workflow on the fly

Pre-planning: eg., WfMC PDL, Petri Net, … vice

On-the-Fly: presented approach

- Workflow is pre-defined long before the process has started
- No means to consider the current executive’s state, workload, capacity, capability, trustworthiness, rational interest
- Predefined workflow plans are far from being effective

- Workflow is developed step-by-step in the course of task execution by coalition of distributed autonomous rational actors
- Optimal workflow branch (activity performer) is chosen each time as the result of contracting negotiations

Source: Our example from UkrPROG’2000 paper
Cooperation Models Layer: **Coordination**

Coordinating the flow of Activity Performance within a Task

- **LINDA-like Tuple Space** coordination model is used as the basics
- A dedicated Utility Coordination Agent manages the process
- Activities which need the results of other activities as parameters are postponed until necessary data is published to the Blackboard

… love to discuss the details at a coffee break …
Cooperation Models Layer: Monitoring

Plug-ins:

- Adjusting Social Behavior: Fellow Capability Assessment

- Adjusting Social Behavior: Fellow Credibility Assessment

- Organizational Unit Performance Monitoring: further adaptability to typical tasks
Cooperation Models Layer: Monitoring

Adjusting Social Behavior: Fellow Capability Assessment

- Activities are advertised to the fellows possessing relevant capabilities
- Knowledge about changing fellows’ capabilities is adjusted dynamically
- Agents benefit from cooperative work by adjusting their beliefs about the fellows

\[r = \begin{cases}
0 & \text{if the fellow rejected the activity,} \\
0.5 & \text{if the fellow replied that it can accept the activity} \\
1 & \text{if the activity was finally delegated to the fellow}
\end{cases} \]
Cooperation Models Layer: Monitoring

Adjusting Social Behaviour: Fellow Credibility Assessment

Social laws:
- Relative cooperation commitment
- Activity arrangement convention
- Results delivery commitment

Fellows with higher credibility value w.r.t. the certain activity have better opportunities to get the next contract and, thus, to increase their own utility.
Cooperation Models Layer: Monitoring

Organizational Unit Performance Monitoring:

Source: Our example from UkrPROG’2000 paper

- Monitoring information (rejected activities, idle state durations) is collected by Coordination Agent
- It may be further used by human administrators to fine-tune the organization by adjusting agents’ capabilities, capacities, organizational units’ staff
- Organization thus becomes more optimized to the performance of the typical tasks
Interoperability Layer:

Operational:
- Interaction Protocols
- Conversation Patterns

Semantic:
- Ontologies
Interoperability Layer: Operational

Interaction Protocols

- Any relevant widely accepted interaction protocol (e.g., FIPA) providing the common frame for inter-agent operation may be used to facilitate to agents cooperative task performance.

- It is considered that a protocol versus a conversation pattern is a more complex and a more purpose-specific construct and may be assembled of conversation patterns and communicative patterns (performatives) of the Communication Layer.

- Slightly modified FIPA Contract Net Protocol was used to arrange negotiations on activity allocation.

Interoperability Layer: Operational

Conversation Patterns and Parametric Feedbacks

Parametric feedbacks – expressed capability and commitment to perform requested activity (service) at a certain state with respect to the self-interest of a service provider

\[a = f(X,Y(X)) \]

\[\tilde{Y} = \tilde{y_1}(X),...,\tilde{y_n}(X) \]

a - wants a pizza in half an hour from

\[Y(X) - \text{is how much wants to pay for pizza delivery in time} \]

\[\tilde{Y}(X) - \text{is how much would like to receive for the same pizza delivery} \]
Interoperability Layer: Semantic

Ontologies - shared common specification of a conceptualization

Task Ontology

Negotiation Ontology

OilEd 2.2a[1] and FACT[2] reasoner were used for ontologies design and expressiveness check. OIL, RDFS, DAML and SHIQ versions of Task and Negotiation Ontologies are available at http://eva.zsu.zp.ua/eva_personal/ontologies/

Communication Layer:

KQML performatives ask-one and tell used for conversation patterns and (further on) for CNP protocol construction

\(T = \{('DeliverPizza', X, Y) \} \)

(ask-one
 :sender "I3"
 :receiver "M"
 :in-reply-to Null
 :reply-with DeliverPizza-TDF
 :language (XML)
 :ontology (Negotiation)
 :contents

 <Desirability>
 <Activity> <Name>DeliverPizza</Name> </Activity>
 <Deadline> <Value>23.05.2002/20.00</Value>
 <Format>datetime</Format> </Deadline>
 <Time> <ZeroPoint> <Value>27.10.2001/08.00</Value>
 <Format>datetime</Format> </ZeroPoint> <Granularity><Value>2</Value>
 <Format>hours</Format> </Granularity>
 </Time>
 <PointsNo>6</PointsNo>
 <TdfPoint> <TimeIncr>0</TimeIncr> <Incentive><Value>25</Value>
 <Format>Money</Format> </Incentive> </TdfPoint> ...
 <TdfPoint> <TimeIncr>30</TimeIncr> <Incentive><Value>5</Value>
 <Format>Money</Format> </Incentive> </TdfPoint>
 </Desirability>
)

(tell
 :sender "M"
 :receiver "I3"
 :in-reply-to DeliverPizza-TDF
 :reply-with Null
 :language (XML)
 :ontology (Negotiation)
 :contents

 <TdfFeedback>
 <activity> <name>DeliverPizza</name> </activity>
 <PointsNo>2</PointsNo>
 <TdfPoint> <TimeIncr> </TimeIncr> <Incentive><value>25</value>
 <Format>Money</Format> </Incentive> </TdfPoint>
 <TdfPoint> <TimeIncr> </TimeIncr> <Incentive><value>5</value>
 <Format>Money</Format> </Incentive> </TdfPoint>
 <TdfPoint> <TdfFeedback> ...
 </TdfFeedback>
)

Transport Layer:

Transport Layer elements should be strictly standardized to ensure wide acceptance and usage in open systems with heterogeneous components.

A general consensus on the transport environment is that it should provide the shell for agent **naming**, **location** and **message delivery** mechanisms.

According to **FIPA Transport Service Reference Model** Agents in an open organization are bound to **Agent Platforms** (AP) and exchange messages via the **Transport Services** of their AP-s.

The mechanism FIPA proposes as the standard to cope with various network protocols is the use of the **message Envelopes**.

For the moment FIPA has provided specifications for **IIOP** and **WAP** protocols.
Conclusions: Results and Lessons Learned

- Cooperation while performing business processes by autonomous, distributed actors possessing rational, uncertain and, sometimes, contradictory behaviors within an open organization is rather a complex utility.
- There are still lots of open issues in the domain: e.g., the lack of widely accepted consensus on how all this staff should be structured and organized.
- The contribution of the presented research is the proposal of a four-layer formal cooperation framework for agent-enabled business process management.
- The paper is not so ambitious as to claim the final solid word in the domain, but rather to analyze the trends, to try to put it to the reasonable places within a conceptual hierarchy.
- Presented results to some extent prove that there is some sense in the proposed layering, especially in the domain of business process management and performance.
- Review of related work (in the paper) provides no vital contradictions to the presented layering proposition.
Domain Keywords:

- Cooperation
- Coalition
- Rationality
- B2B
- Agent
- Workflow

Google search with these keywords returns: …
...funny, but: The Domain is still HOT for Further Research

Our paper at eCOMO’2001 (ER’2001)

RACING: towards the next step ahead – http://www.zsu.zp.ua/racing/

... Just filling in Google blank spaces