Semantic Web technologies in Unit-net IEDI

Vadim Ermolayev
Zaporozhye State University, Ukraine
UnIT-Net: IT in University Management Network
TEMPUS/TACIS MP-JEP-2010-2003

http://eva.zsu.zp.ua/
http://www.zsu.edu.ua/
http://www.unit-net.org.ua/

UkrPROG’04, Kiev, 02-03.06.2004
Outline:

- What is the Semantic Web – just to remind ...
- UnIT-Net: the motivation, the domain, the project
- The State of the Art: the advances and the pitfalls
- Semantic Web technologies in UnIT-Net Infrastructure for Electronic Data Interchange
The Semantic Web*

- **W3C Initiative**
- **Aim**: to provide a comprehensible framework for identifying, representing and processing the SEMANTICS of Web resources
- The ultimate **vision**:
 - Worldwide distributed device for computation
 - Inhabited with artificial service providing agents

A Walkthrough Example

Return the list of the 1-st year CS students who:

- had received maximal grade in Mathematics at the entrance examinations
- and have failed to pass the 1-st Term examination in any basic course in Mathematics

Why?
Return the list of the 1-st year CS students who:

- had received maximal grade in Mathematics at the entrance examinations
- and have failed to pass the 1-st Term examination in any basic course in Mathematics
A Walkthrough Example

Return the list of the 1-st year CS students who:

- had received maximal grade in Mathematics at the entrance examinations

...and have failed to pass the 1-st Term examination in any basic course in Mathematics

Mathematics:
- Math Analysis
- Linear Algebra
- Analytical Geometry
...
To achieve and sustain dynamic improvement service-oriented organizations, like Universities, need an IT infrastructure that underpins:

- Flexible and robust management of their activities through Intelligent Distributed Information Retrieval
- Decision making support
Objective(s):
- Creation of the National “Network of Excellence”
- Dissemination of the best practices – IT in University Management
- Elaboration of the Specifications recommending the reasonable ways of using IT in University Management
- Design and implementation of the Research Prototype of the National Infrastructure for Electronic Data Interchange (motivation)

Participants:
- Kherson State University (project coordinator)
- Ministry of Education and Science of Ukraine
- Kharkiv national University
- Zaporozhye State University
- University of Nice – Sofia Antipolis, France
- Glasgow Caledonian University, UK

http://www.unit-net.org.ua/
The State of the Art ...

- **Not really a breakthrough** in the Domain!!!
- Lots of related work, e.g., TSIMMIS, MOMIS, BUSTER, DOME, InfoSleuth, KRAFT, OBSERVER, Ontobroker, PICSEL, SIMS, … (proves the importance)
- **Novelties:**
 - **Ontologies** specified in W3C emerging de facto standard language (**OWL DL**)
 - **Ontology-driven** Semantic Query Formulation, Transformation, … (ZSU RACING Project)
 - IR (RDB-structured) semantics is formalized by means of a semi-structured Ontology Specification Language (**OWL DL**)
 - Conceptually – one more layer (**Ontology**) of Semantic Specification on top of the IR schema
 - **Semantic Web Service** technology for Uniform IR Wrapping
- All these is in the **Mainstream of Semantic Web Activities**
Complications: Natural Distribution and Heterogeneity

- **Organizations** involved in the Educational framework are rightfully independent
- They own and maintain their data and knowledge sources autonomously
- Serious complications for their integration:
 - IR-s may be opened or closed to external access
 - IR-s may be provided by different hardware and software using various notations and protocols
 - IR-s may be disparately structured
 - IR-s may have different data models behind them
 - IR-s are semantically heterogeneous
The Principles of IEDI Architecture

- **Mediator architecture** with the centralized mediator
- **Hybrid** approach to **knowledge representation**
 - Centralized **Mediator Domain Ontology** (MDO)
 - De-centralized **Information Resource Ontologies** (IRO)
- Use of **IR Registration** to allow the resource become available for querying
- Does **not** provide **full automation** for ontologies’ mapping and alignment
- **Rewriting** technique with **mappings** and **late binding** to produce, process, and perform queries
IEDI Architecture in a Nutshell

a User having an arbitrary query

IEDI

IR Providers which own disparate resources

CS Student IR

Univ. Entrant IR
IEDI Architecture in a Nutshell

User Layer

Mediator Layer

IR Wrapper Layer

IR Layer

Request to formulate a query

Q-ry Results in terms of MDO

 Pose queries

an IR Provider

Register IR-s

Maintain IR changes

Request to formulate a query

Q-ry Results in terms of MDO

 Pose queries

an IR Provider

Register IR-s

Maintain IR changes

IEDI Mediator

- Query Formulation Server
- Sub-Query Extraction Server
- Sub-Query Execution Server
- Results Mark-Up Translation Server

IR Layer

- IR

IR Wrapper Layer

- IR Wrapper Web Service
- IR Wrapper

IRKB

- AUPO
- MDO
- IRDMO

User

MKB

User

MKB
The Tasks for UNIT-NET IEDI

- **To Query Distributed Semantically Heterogeneous Information Resources**
- **To Register Information Resources**
- **To Maintain Coherent Semantic Descriptions**

What **IEDI** is **NOT** Supposed to Do:
- IR updates
- Results Fusion
IEDI: User Categories and Roles

- **An Authorized USER (AU):**
 - Poses queries in the terms of University Management Domain (a TOOL, a LANGUAGE)

- **A MEDIATOR ONTOLOGIES ENGINEER (MOE):**
 - Maintains Domain Ontology KB (a TOOL)
 - Interacts with RESOURCE ONTOLOGY ENGINEERS for:
 - Registering their Resources (semi-automatic, a TOOL)
 - Aligning Domain and Resource Ontologies (Semi-automatic, a TOOL)

- **An IR ONTOLOGY ENGINEER (IROE):** ...

- **An IR PROVIDER (IRP):**...
IEDI: Functionalities

- **Query** *(automatic)*
 Distributed
 Semantically
 Heterogeneous
 Information
 Resources

- **Register** *(semi-auto)*
 Information
 Resources
 (ontology merge)

- **Maintain** *(semi-auto)*
 Coherent
 Semantic
 Descriptions
 (ontology alignment)

- **!!!** Semi-automatic, authorized, secure ...
Formulate Query
Get Query Results

Formulate Query

Query O’k?

Yes

No

Yes

No

Critical?

No

Report: Ontology Problem

Yes

Extracted?

No

Extracted?

Yes

Extracted?
Semantic Web components in IEDI

- Ontology Language: **OWL** (W3C recommendation)
- Ontologies at Mediator and IR layers
- Mediator Query Language: **RDQL** (W3C recommendation)
- Mark-up Language: **XML** (W3C standard recommendation)
- Ontology processing tools
- **Semantically reinforced Web Services** for IR wrapping
Ontologies are developed to provide a machine-processable semantics of IR-s that can be communicated between different software and humans.

- **An ontology is a formal, explicit specification of a shared conceptualization**
 - **Conceptualization** - a simplified abstract model of some object or phenomenon in the world which identifies the relevant concepts of that object or phenomenon.
 - **Formal** ...
 - **Explicit** ...
 - **Shared** ...

IEDI: Hierarchy of Ontologies
IEDI: Usage of Ontologies

<table>
<thead>
<tr>
<th>Processes</th>
<th>ULO</th>
<th>MDO Core</th>
<th>MDO</th>
<th>IRDMO</th>
<th>UPRO</th>
<th>IRO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Query distributed autonomous semantically heterogeneous information resources</td>
<td>--</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R/U</td>
<td>R</td>
</tr>
<tr>
<td>Register new information resource</td>
<td>R</td>
<td>R</td>
<td>R/U</td>
<td>R/U</td>
<td>--</td>
<td>R</td>
</tr>
<tr>
<td>Maintain coherent semantic descriptions</td>
<td>R</td>
<td>R/U</td>
<td>R/U</td>
<td>R/U</td>
<td>R/U</td>
<td>R/U</td>
</tr>
</tbody>
</table>

- **R** – usage for reference purposes only
- **R/U** – used as a reference and is updated
- **--** – not used
Ontologies: Walkthrough Example

ULO: Artifact

IRO: CS Students, Univ X

MDO:
- Mathematics
 - Math. Analysis
 - Analytical Geometry
 - General Algebra
 - Subject of Mathematics

IRO: CS Students, Univ Z

ULO: Immaterial

IRO: Subject in Mathematics

MDO:
- Algebra
 - Linear Algebra
 - Geometry
 - Math. Statistics

IRO: Algebra

Why?
Semantically Reinforced Components

- Query Formulation Server
- Sub-query Extraction Server
- Results Mark-up Translation Server
- IR Wrapper
Query formulation (in the terms which are convenient and understandable for the specific AU) – manual, by the Tool

Query Transformation: reformulating the query in the terms of MDO (preserving the recall) – automatic

The GOAL: transform the Initial Query (IQ) to the Resulting Query (RQ) in the terms of the MEDIATOR DOMAIN ONTOLOGY

The procedure:
- Form the Query Plan (QP) by parsing the IQ
- Use the User’s Profile to map the key words of QP to the concepts of the DOMAIN ONTOLOGY
- Use semantic relationships between the concepts of the DOMAIN ONTOLOGY to add more semantics to RQ

The Basic Principle: – IQ preservation
IQ Preservation

- IQ preservation principle:
 - Strategic goal is to gain more Recall and more Precision
 - I.e., relevant RQ results $r(RQ)$ should be the sub-set of all IQ results $t(IQ)$ and, ideally, the difference $t(IQ) \setminus r(RQ)$ should contain only irrelevant results
 - Consequently, RQ should have the same or the broader meaning than IQ

- Transformation mappings are produced in the way providing that the recall of the RQ is at least the same than the recall of the IQ
IEDI: Implemented Components

- User Profile Ontology Editor
- Tool for IQ Plan editing and approval
 - Contribution of the RACING project
 http://racing.zsu.zp.ua
- Parts of IEDI Mediator Query Formulation Tool
IEDI Mediator: Sub-Query Extraction*

1. Preliminary grouping
2. Finding Determining Concepts
3. Concept mapping
4. Slot mapping
5. Ensuring that sub-query results will be correct RDF graphs
6. Forming RDQL SELECT sections
7. Forming RDQL AND sections

Walkthrough Example: IQ (RDQL)

Retrieve the list of the 1-st year students who have received maximum grade (5) in Mathematics at the University entrance examinations and have failed to pass the 1-st semester examination in any basic course in Mathematics (got unsatisfactory grade - 2).

```
SELECT ?firstName, ?secondName, ?lastName, ?specialityName, ?sessionExTitle
WHERE
  (?x, stud:first_name, ?firstName), (?x, stud:second_name, ?secondName),
  (?x, stud:exams_passes, ?y),
  (?y, stud:exam_title, ?entrantExTitle), (?y, stud:exam_type, ?examType1),
  (?y, stud:entrant_grade, ?entrantGrade), (?y, stud:examOnDiscipline, ?r1),
  (?z, stud:exam_title, ?sessionExTitle), (?z, stud:exam_type, ?examType2),
  (?z, stud:session_grade, ?sessionGrade),
  (?a, stud:specialityName, ?specialityName),
  (?r1, stud:disciplineName, ?entrDiscName), (?r1, stud:includes, ?i1),
  (?r2, stud:disciplineName, ?sessionDiscName), (?r2, stud:includes, ?i2),
  (?i1, stud:disciplineName, ?discName1),
  (?i2, stud:disciplineName, ?discName2)
AND (?examType1 eq "Exam"), (?examType2 eq "Exam")
AND (?entrDiscName eq "Mathematics")
AND ((?sessionDiscName eq "Mathematics")
AND ((?entrantExTitle eq ?discName1) || (?sessionExTitle eq ?discName2)))
AND ((?sessionExTitle eq "Linear Algebra") ||
  (?sessionExTitle eq "Mathematical Analysis"))
AND (?entrantGrade eq "5")
AND (?sessionGrade eq "2")
AND (?semesterNum eq "1")
USING stud FOR <MDO-URL#>
```
Walkthrough Example: Results (RDQL)

```
SELECT ?firstName, ?secondName, ?lastName, ?specialityName, ?sessionExTitle
WHERE
(?x, abo:aboName, ?firstName),
(?x, abo:secondName, ?secondName),
(?x, abo:surname, ?lastName),
(?x, abo:passes, ?y),
(?x, abo:AboSpec, ?a),
(?y, abo:EntrantExamName, ?entrantExTitle),
(?y, abo:examType, ?examType1),
(?y, abo:grade, ?entrantGrade),
(?y, abo:examOnDiscipline, ?r1),
(?a, abo:specialityName, ?specialityName),
(?r1, abo:disciplineName, ?entrDiscName),
(?r1, abo:includes, ?i1),
(?i1, abo:disciplineName, ?discName1),
AND (?examType1 eq "Mathematics")
AND (?entrantExTitle eq ?discName1)
AND (?entrantGrade eq "5")
USING abo FOR <IRO-Entrant-URL#>
```

```
SELECT ?firstName, ?secondName, ?lastName, ?specialityName, ?sessionExTitle
WHERE
(?x, stud:name, ?firstName),
(?x, stud:secondName, ?secondName),
(?x, stud:surname, ?lastName),
(?x, stud:examPasses, ?z),
(?x, stud:onSpec, ?a),
(?z, stud:examName, ?sessionExTitle),
(?z, stud:examType, ?examType2),
(?z, stud:grade, ?sessionGrade),
(?z, stud:semesterNum, ?semesterNum),
(?a, stud:specialityName, ?specialityName)
AND (?examType2 eq "Exam")
AND ((?sessionExTitle eq "Linear Algebra") ||
    (?sessionExTitle eq "Mathematical Analysis"))
AND (?sessionGrade eq "2")
AND (?semesterNum eq "1")
USING stud FOR <IRO-Student URL#>
```
Retrieve the list of the 1-st year students who:
- have received maximum grade (5) in Mathematics at the University entrance examinations
- and have failed to pass the 1-st semester examination in any basic course in Mathematics (got unsatisfactory grade - 2).

Retrieve the list of the 1-st year students who have received maximum grade (5) in Mathematics at the University entrance examinations

Retrieve the list of the 1-st year students who have failed to pass the 1-st semester examination in any basic course in Mathematics (got unsatisfactory grade - 2).
IEDI: IR Wrapping

- **IR Wrapper** design is based on Web Service Technology

- IR Wrapper Web Service is Semantically Reinforced by:
 - Generic IR Wrapper
 - Specific IR Wrapper **binding**

- which use **IRO** for their operations

IEDI Generic Wrapper and Wrapper Bindings

Web Service Port

IR Wrapper Web Service

Translate Terminology

Translate Query Notation (RDQL-IRQL)

Perform IR Query

Mark-Up Query Result (in terms of IRO)

IR Wrapper Server

IRO

WKB

IR Layer

Query Results (Marked-up in terms of IRO)

Query (RDQL in terms of IRO)

IR specific (wrapper binding)

IR invariant (generic wrapper)

Wrapper Layer

Query Results (Plain Text)

IR Server
IEDI: Implemented Components

- Generic IR Wrapping Web Service
- Wrapper Testing Suite
- IR Wrapper for ZSU University Entrant IR
Unit-net IEDI: to Round up …

- That is what we have done in the project ... so far

- Semantic web technologies are used (and developed) for:
 - representing different aspects of knowledge
 - domain, resource, user profile, mapping, high-level
 - formulating, transforming, splitting down the queries to sub-queries
 - IR wrapping
 - Query results mark-up
That’s it …

Shall be happy to know the answers

Mentioned papers and these slides are available from:
http://eva.zsu.zp.ua/eva_personal/evapubs.htm