A Strategy for Automated Meaning Negotiation in Distributed Information Retrieval

Vadim Ermolayev
Natalya Keberle
Vladimir Vladimirov
Wolf-Ekkehard Matzke

Zaporozhye National University, Ukraine
Cadence Design Systems GmbH, Germany

Searching in the ISWC Semantic Bank: <negotiation> - One Item Found
The Outlook

• Motivation:
 – Google game or
 – Do we always use the PROPER domain theory?

• What happens in Distributed Information Retrieval:
 – Actors, Roles and the need to reach Agreements (on Domain Theories)

• Semantic Context and Negotiation Settings

• Meaning Negotiation Strategy:
 – How to behave smartly to reach agreements
 – Argumentation: Contexts, Propositional Substitutions, Presuppositions, Concession, Reputation ... and around

• Conclusions and future work

Shall be as informal as possible
Otherwise we’ll perish in endless deliberation
Do we Use the Proper Domain Theory?

• You work on agent-based system implementing a tourism-related application

• Who is inventing the same square wheel?

• One usual way to find out:
 – To ask a search engine:
 <agent> and <tourism> and <project>
 – E.g., Google:
 http://google.com/search?q=agent+tourism+project

• The results were …
Seems that ... we don’t – at all!

Links Found:
- 141,000

Analyzed:
- 1-50

Among them:
Matches:
- 13(26%)
Mismatches:
- 37(74%)
If We’ve been Smarter

• We should have used a **different** **DOMAIN** **ONTOLGY**

• This may have led us to …
... the Transformation Like:

• `<agent>` AND `<tourism>` AND `<project>`

 • **DOMAIN ONTOLOGY**

 `<agent>`: synonym_of(<agent>, <software agent>)
 `<software agent>`: is_a(<software agent>, <software>)
 `<software agent>`: implements(<software agent>, <recommender system>)
 `<software agent>`: component_of(<software agent>, <travel agent>)

 • `<tourism>` AND `<project>` AND `<software agent>` AND (recommender system OR <travel agent>)

• We have tried Google with that …
Is this the Proper Domain Theory?

Resources: 18
Among them:
Matches: 15 (+2 - 94%) vs 26% before
Mismatches: 3 (6%)

Interesting to note:
All of them could be found among the results (141 000) of the previous query

Compare: recall, precision
How to Adhere to the **PROPER** Domain Theory?

- Still not ready to answer
- We’ll explore what happens in **DIR** first …
Information Retrieval

Agents in Tourism Projects?
Information Retrieval
(semantically mediated – our Google game)

Software Agents as Recommender Systems in Tourism Projects?

Agents in Tourism Projects?
Distributed Information Retrieval
(agent-based, mediated... Semantic Context?)

Match? Align?
1 shot vs iterative

Semantic Context of a Query is too poor (incomplete) to provide reliable 1 shot matching
Distributed Information Retrieval
(agent-based, mediated, Negotiated Semantic Context)

RACING Mediator

- Query Formulation
- Query Transformation
- Query Decomposition
- Negotiation with IRPAs
- Sub-Query Outsourcing

IRP (Agent)
How to Adhere to the **PROPER** Domain Theory?

- Just observe **what people do:**
 - Be **smart**
 - Don’t be **stubborn**
 - Be ready to **concede**
 - As much as your reputation allows
 - Be **pro-active**
 - Try to reach the agreement on the Semantic Context of the Query

- **Negotiation** - incorporating all of the **above**
 - Use **Argumentation** to negotiate
 - In a way to **Concede monotonically** to the **Deal**
Negotiation Settings:
One-to-One, Non-Symmetric, Multi-Issue, on Semantic Context

• The **Goal**
 – The **Deal** stricken over the **Negotiation Set**

• The Interaction **Protocol**
 – Symmetric vs **Non-Symmetric**
 – **One-to-One**, **One-to-Many**, **Many-to-Many**

• The **Negotiation Set**
 – Single-Issue vs **Multi-Issue**
 – **Semantic Context** (the part of the Domain Theory communicated to the negotiation party)

• The **Strategy** (of a party)
 – The set of internal Rules an Agent uses to pursue the **Goal** (of striking the Deal)
Semantic Context
after (Beun, van Eijk, and Prüst, 2004)

• **Definition 1** (Semantic Context): The context C_c of a concept $c \in \Gamma^*$ is the union of the set Γ_i of $\mathbb{T}\mathbb{T}$ statements $\gamma_i \in \Gamma$ which are the assumptions over c and the set Γ_j of $\mathbb{T}\mathbb{T}$ statements $\gamma_j \in \Gamma$ which may be explicitly inferred from $\{\Gamma \vdash c : \star_s \} \cup \Gamma_i$ using the rules of the type system:

$$C_c = \Gamma|_c = \Gamma_i \cup \Gamma_j$$

* Γ stands for **Domain Theory**
** $\mathbb{T}\mathbb{T}$ stands for **Type Theory**

*** $\Gamma \vdash c : \star_s$ reflects that 1) c is the concept (has the special type “sort”) and 2) this fact (1) may be inferred from the Domain Theory
Negotiation Strategy: the Questions to be Answered (by providing the Rules)

• Let Q has Γ_Q and M has Γ_M:
 – Which of the parties starts first? – Straightforward! Q of course

• The others are more difficult:
 – How to generate argumentation on the semantic discrepancies between Γ_Q and Γ_M?
 – How to ensure that these discrepancies are eliminated monotonically in negotiation rounds?
 – How to assess if the current level of these semantic discrepancies is sufficient to strike the deal?
 – How to find out that the movement to the perfect match (no discrepancies) is no longer possible?
Argumentation on Semantic Discrepancies

• Define **Semantic Distance** as $SD : \Gamma_Q \times \Gamma_M \rightarrow R$

• Efficient argumentation should lower the SD (monotonically)

• Biggest contribution to SD is provided by the “**orphans**” of Γ_Q wrt Γ_M (or Γ_M wrt Γ_Q)
 – **Orphans**: concepts, concept properties, or propositions expressing relationships of Γ_Q having no analogy in Γ_M (or of Γ_M in Γ_Q)

• So – find a kind of an extra context Δ_o for each encountered orphan, say, o

• A party concedes on o if $C_o \cap \Delta_o \neq \emptyset$

Orphans: an Example
The Google Game

One can find a different (more detailed) example in the paper
Contexts & Propositional Substitutions

• **Q -> the Context of a Project:**
 - An Agent implements a Project

• **M -> Equivalence hypotheses:**
 - Agent$_Q$ ↔ Agent$_M$
 - Agent$_Q$ ↔ Software Agent$_M$

• **M -> Propositional substitution:**
 - Software Agent implements a Recommender System

• Communicated to **Q** as the Argumentation (Context)

• By making Presuppositions
Presuppositions

• Based on the computed Sim values
• M - Presupposition: Project_Q ↔ Recommender System_M
• M: What if Q submitted
 – An Agent implements a Recommender System
• But NOT
 – An Agent implements a Project
• The Sim value of Agent_Q ↔ Software Agent_M will GROW
• Formally: Presupposition Set PR = \bigcup_{i=1}^{n} PR_i is formed wrt the communicated context C
Presuppositions Make Contexts Closer
Presuppositions Make Contexts Closer
Presuppositions Make Contexts Closer
Presuppositions Make Contexts Closer
A Presupposition becomes the Propositional Substitution

\[h: \text{Project}_Q \text{ equals to } \text{Recommender System}_M \]
The Use of Presuppositions

• (1) Set up the similarity threshold $minSim$ for accepting a hypothesis as the presupposition
• (2) For each H_i:
 – Choose the hypothesis h with the highest Sim_h value and add it to PR_i as pr iff its Sim_h value is over $minSim$
 – Revise the propositional substitutions for H wrt pr and re-assess Sim_h values
• (3) Repeat (2) until at least one pr is added to H
• (4) For PR_i drop all pr except the one with the highest Sim_h value
• After PR is formed we may also drop all the hypotheses in each H_i except the one with the highest Sim_h value
• The difference in SD_b before and SD_a after the formation of PR shows the efficiency of the formed PR:
 $$E_{PR} = (SD_b - SD_a) / SD_b$$
When to Stop?

• A deal may be stricken if:
 – No orphans are left in Γ_Q wrt Γ_M (or Γ_M wrt Γ_Q)
 – Some orphans are still present, but SD is less than the commonly agreed threshold

• Further negotiation is useless (the parties have exhausted their argumentation and end up without the deal):
 – The (substantial) orphans are still present
 – There were no concessions in the two subsequent rounds
 – Q needs to reformulate the query it in the terms more coherent to Γ_M or to give up
More Semantic Commitments –
Less Freedom to Concede

• The encounter is **non-symmetric**

• **M** normally has lots of **Semantic Commitments** to keep (agreements on similarities or even equivalence)

• **Q** may offer a good reason to drop some of them
 – If **M adopts** – than needs to re-negotiate with all the others (lots of risk that some peers abstain)
 – If **M abstains** – no concession – risk to end up with no deal (locally)

• So **M** will better **abstain**

• The **Readiness to Concede** should be **weighted by** the degree of the **Semantic Commitment** of the party:
 – **Q** should be ready to **concede more** (to receive the service)
 – **M**’s **reputation** makes it **more stubborn**
Conclusions and Future Work

• We are at an early stage
• The formal framework has been developed in RACING*
• Partly adopted by PSI* Negotiation Framework
• Ontology debate framework (1 PhD student working)
• Research Prototype implementation anticipated
• Evaluation experiments
 – E.g., like the extended Google game …
 – As one of the reviewers wrote – a challenging task itself …
• Looking forward to receiving advice
• Ready for cooperation

* Please ask for back-up slides
“I find it critical to remember that every ontology is a treaty – a social agreement – among people with some common motive in sharing.”

- Tom Gruber (recently)

Propositional Substitution: **People <- Agents**

Questions please ...
• **Title:** Rational Agent Coalitions for INtelliGent Mediation of Information Retrieval on the Net

• **Objective:**
 – Investigate and evaluate the applicability of agent-based approach covering rationality, agency, coalition formation, collaboration to market oriented sectors of Distributed Information Retrieval

• **Focus:**
 – Mediation of information search and retrieval from structured or weakly structured information resources of:
 – Full-text online collections of Scientific Publications
 – Online Teaching Materials

• **Performed by:**
 – Dept of IT, Zaporozhye National University

• **Funded by:**
 – Ukrainian National Ministry of Education and Science

• **URL:**
Productivity Simulation Initiative
Project Lines and Partners

Governmental Funding

Industrial Sponsors

2004
MF
SSP
NF
QF
AF
UC
TBC
TBC
TBC
Industrial Product
UP
PPE
PAS
CERTICON
Beyond …

Research
Evaluation