
State of the Art in Agent-Based Modeling and Simulation
of Design Processes

Technical Report No: TR-PSI-2-2004
January 2004

Authors:
Vadim Ermolayev

Department of IT
Faculty of Mathematics
Zaporozhye State University
66 Zhukovskogo st. 69063 Zaporozhye
Ukraine

Abstract. The report surveys the research activities in the area of agent-enabled
modeling and simulation of design processes. It covers known models,
modeling approaches and agent-based implementations addressing or relevant
to design process modeling and simulation. The report also overviews research
projects which have produced some valuable results contributing to the state-of-
the-art in the domain. It also provides the references to the leading research
facilities in the area of agent-based design process modeling, references the
relevant research papers and analyses the known approaches to model design
activities in Semiconductor and Electronic Systems design. The results of the
analysis of the state-of-the-art point to the fact that the renaissance in Agent-
Enabled Engineering in early 90-s demonstrated by the constellation of the
pioneering projects in the domain has unfortunately ended up with no industrial
strength solution. The successors of the reviewed projects, though been
declared still provided no evidence of substantial progress in the open sources.
More recent academic research is centered on the development of the enabling
solutions, methodologies and infrastructures for engineering design processes.
The state-of-the-art in the field suggests that it might be not really feasible to
simulate creative human activities by the available methodologies, e.g.,
automated problem solving. Though some pioneering publications appear in
attempts to formalize designers’ creativity, it might be more rational to focus on
the optimizing of the collaborative work of a designers’ team in a dynamic self-
optimizing engineering design process.

Copyright: Cadence Design Systems, GmbH, 2004

Contents

Contents ... 2
List of Figures .. 3
List of Acronyms.. 4
1 Introduction... 6
2 SES Design is the kind of Integrated Product Design ... 7

2.1 Dimensions of complexity in IPD.. 7
2.1.1 Boundaries between Disciplines.. 7
2.1.2 Different Built-in Goals .. 7
2.1.3 Design in ‘Big Chunks’... 7
2.1.4 Counter-Intuitive Behavior in Design Teams.. 8
2.2 Solution Strategies for IPD .. 8
2.2.1 Small Design Methods .. 8
2.2.2 Opportunistic Contribution.. 8
2.2.3 Cooperation ... 8
2.2.4 Least Commitment .. 9
2.2.5 Concurrency in Design.. 9
2.3 Design Models ... 9
2.4 What do we Need to Model DEDP, in Practice?.. 10

3 Agent-Based Approach in Design... 10
3.1 What an Agent is? .. 10

4 Pioneers in Agent-Enabled Design.. 11
4.1 Shared Dependency Engineering (SHADE)

 and Palo Alto Cooperative Testbed (PACT).. 12
4.2 Distributed Intelligent Design Environment (DIDE) 13
4.3 Automated Configuration-Design Service (ACDS) 13
4.4 Single Function Agents (SiFA) .. 15
4.5 Agent-Based Concurrent Design Environment (ABCDE) 15
4.6 SHARE: a Methodology and Environment

 for Collaborative Product Development ... 16
4.7 Pioneers: Lessons Learned ... 16

5 Enabling Solutions for Modeling Dynamic Engineering Design Processes........ 17
5.1 New(er) Models for DEDP .. 18
5.1.1 Responsible Agents for Product-Process Integrated Design (RAPPID).... 18
5.1.2 Agent-Based Decision Network (ADN).. 19
5.2 More Generic Enabling Solutions .. 20
5.2.1 Decentralized Workflow Engine ... 20
5.2.2 Interoperability in CKM, CSCW... 20
5.2.3 Advanced Infrastructures for Collaborative Design.................................. 21
5.2.4 Networked CSCW Methodologies .. 22
5.2.5 Agent Services to Support Mobile Enterprise Workforce......................... 22

6 Conclusions... 22
References.. 24

List of Figures

Fig. 1. Running example of a robotic manipulator design.
Fig. 2. SiFA: Discovering Methodologies for IPD.
Fig. 3. An Example configuration of RAPPID marketplace.
Fig. 4. Agent-enabled CMM in COMMA project.

List of Acronyms

ABCDE Agent-Based Concurrent Design Environment
ACDS Automated Configuration-Design Service
ACI Advanced Collaboration Infrastructure
ACL Agent Communication language
ADN Agent-Based Decision Network
AI Artificial Intelligence
AOSE Agent Oriented Software Engineering
ARPA Advanced Research Projects Agency
B-MAN Business Mobile Agent Network
CAD/CAE Computer Aided Design/ Computer Aided Engineering
CKM Corporate Knowledge management
COMMA COrporate Memory Management through Agents
CSCW Computer Supported Collaborative Work
DARPA Defense Advanced Research Projects Agency
DDPM Decision-based Design Process Model
DDICSP Distributed Dynamic Interval Constraint Satisfaction Problem
DEDP Distributed Engineering Design Process
DIDE Distributed Intelligent Design Environment
DMDO Distributed Multi-disciplinary Design and Optimization
DS Data Sharing
DSC Design Space Colonization
E-COLLEG Advanced Infrastructure for Pan-European Collaborative

Engineering
EDA Engineering Design Activity
EDM Engineering Design Modeling
EDP Engineering Design Process
FIPA Foundation for Intelligent Physical Agents
GDS Group Decision Support
IC Integrated Circuit
IMPACT Improving Manufacturing Productivity with Advanced

Collaboration Technology
IP Integrated Product
IPD Integrated Product Design
KIF Knowledge Interchange Format
KQML Knowledge Query and Manipulation language
LEAP Lightweight Extensible Agent Platform
LKB Local Knowledge Bases
MAS Multi-Agent System
OBNM Objective-Based Negotiation Model
OOSE Object-Oriented Software Engineering
OSACA Open System for Asynchronous Cognitive Agents

OWL Web Ontology Language
PACT Palo Alto Cooperative Testbed
PDA Personal Digital Assistant
RAPPID Responsible Agents for Product-Process Integrated Design
SDM Shared Design Model
SES Semiconductor and Electronic Systems
SHADE Shared Dependency Engineering
SHARE Methodology and Environment for Collaborative Product

Development
SiFA Single Function Agents
TRMS Tool Registration and Management Services
XML eXtended Markup Language

1 Introduction

“Design – a signature of human intelligence – was always a great challenge for
artificial intelligence (AI) research” (cf. [VAN99]). Observations of how humans act
in design inspired several fundamental ideas in AI, e.g., automated problem solving
and reasoning [SIM69]. In return, AI research as the broad community has attacked
the problems of design domain by attempting to engineer systems and infrastructures
that are capable of supporting humans in accomplishing tasks that require
intelligence.

The complete process of design has not been fully automated yet in a satisfactory
way, though some attempts have been undertaken. These attempts have used agents
(an engineering sub-area of AI) to create intelligent software infrastructures to support
design processes performed by distributed teams and comprising contributions from
various disciplines.

The report surveys the research activities in the outlined area covering:
– Known models, modeling approaches and agent-based implementations addressing

or relevant to design process modeling and simulation
– Research projects which have produced some valuable results contributing to the

state-of-the-art in the domain
The report also provides the references to the leading research facilities in the area

of agent-based design process modeling, lists the most relevant research papers and
analyses the known approaches which may be applicable to model design activities in
Semiconductor and Electronic Systems (SES) design. The reminder of the text is
structured as follows. Section 2 presents the opinion that SES design, according to the
specificity of the domain, is the kind of an Integrated Product (IP) design, analyses
the dimensions of complexity in IP Design (IPD). It then enumerates possible
effective solution strategies, lists the most popular design process models and
enumerates the features of software infrastructures which may facilitate to making
design support effective and efficient. Section 3 argues that agent-based approach is
applicable to modeling and simulation of engineering design processes by pointing to
the fact that the characteristic features of agents and multi-agent systems are in line
with the requirements mentioned in Section 2. Section 4 surveys some of the most
significant pioneering research projects aimed to create the agent-based software
systems to support design activities and rounds up with the lessons learned in these
first attempts. Section 5 overviews more recent research activities focused on the
search for the models and the enabling frameworks, methodologies, and technologies
to address dynamics in engineering design processes. It lists the factors that bring
dynamics to such processes, then, continues with the survey of the recent models of
engineering design processes and rounds up with the overview of the projects
providing more generic enabling technologies. Section 6 gives the conclusions.

2 SES Design is the kind of Integrated Product Design

A SES design may often be considered an IP comprising various blocks with
different functions, physical properties and constraints, incorporating diverse
technologies and design approaches. IC design is therefore frequently performed
block by block by different design teams, which sometimes originate from different
disciplines (e.g., analog IC design, digital IC design). That is why IC design may be
referred to as a kind of an IPD. It is well known [SBN98] that the design of an IPD
has often the following complications. It is multidisciplinary, performed by
distributed teams, needs re-use of diverse components which rarely fit the idea for
100 percent, and therefore requires substantial effort for proper organization and co-
ordination. All these complications are often underestimated leading to the losses in
the productivity, design quality and, in some extreme cases, to project failures.

2.1 Dimensions of complexity in IPD

Many authors (e.g., [SBN98]) point to the following important dimensions of
complexity in IPD.

2.1.1 Boundaries between Disciplines
In different disciplines knowledge is conceptualized and represented differently

both from the point of view of the notation and the context. Indeed, different
knowledge representation languages, different terms and different shared
conceptualizations (ontologies) are used in different disciplines. The most substantial
consequence of that is the lack of means for communicating to the outside world,
which is very important for IPD. It is also difficult to collaborate, to resolve conflicts,
etc.

2.1.2 Different Built-in Goals
In addition to different knowledge conceptualizations the representatives of different
disciplines or different parts in a distributed design team may have different goals. As
in different disciplines knowledge is accumulated and used independently, the local
goals of autonomous participants are often in conflict with the global goals of the
design. Ignoring the conflicts between local and global goals drives the design process
to possible lifelocks or even deadlocks.

2.1.3 Design in ‘Big Chunks’
Disciplinary designs are processed in large segments. Examples are: an engine, a
chassis, a body of a car; analog IC, digital IC. Big chunks make integration difficult
because valuable information, for example, decisions that may lead to conflicts, is
hidden from the rest of participants. There is also a large overhead in repeating large,
discipline-based segments because of possible failures. However, the cycles are
natural in the domain because of the iterative nature of design.

2.1.4 Counter-Intuitive Behavior in Design Teams
Complex Systems, like IPD teams, possess Counter-Intuitive Behavior. “It has
become clear that complex systems are counter-intuitive, that is they give indications
that suggest corrective action which will often be ineffective or even adverse in its
results” (cf. [FOR69]). Reason: impossible to oversee all the details and the
consequences. Systems (e.g., design teams for complex products like Boeing 777,
Intel processor chip) performing designs are an example of complex systems with
counter-intuitive behavior. Recipe: Proper corrective actions should emerge within
the system.

2.2 Solution Strategies for IPD

The following solution strategies may effectively attack the mentioned complications
in IPD [SBN98].

2.2.1 Small Design Methods
To be smoothly integrated the big chunks of design should be broken into small
(atomic) pieces – design activities.

A design activity is a procedure or a body of orderly procedures for accomplishing
a design task (e.g., design synthesis, design selection, and design evaluation).
Breaking up the design into pieces corresponds to breaking design activities into
smaller activities. Smaller design activities means:
– Fewer decisions are made in each activity
– Shorter time is spent in an activity
– Less information is produced as a result of executing that activity

Smaller design activities are simpler and consume less resources. However,
breaking down the process in many activities at various degrees of granularity may be
more complex from the point of view of the process control and coordination for
different executives at different organizational levels.

2.2.2 Opportunistic Contribution
An opportunistic problem solving strategy facilitates integration of the contributions
of different parties in the design process. An opportunistic approach in contrast to a
predetermined order of contribution allows taking advantage of the diversity of
different opinions and candidate solutions. In opportunistic approach every participant
gets a fair chance to contribute to the goals of the design process so that all points-of-
view are explored. A possible disadvantage of the opportunistic approach is that it
brings less order and produces more difficulties to find out the preferred outcome.

2.2.3 Cooperation
A Cooperative Strategy provides mechanisms by which different participants adopt
common goals (while rationally trying to reach their local goals). Implementation of
the cooperative strategy in a distributed design process results in favoring the
common goals of the design over local goals. As a result of such strategy different
parties spend their diverse resources in the same direction, coherently. Cooperation

also means that the parties are aware of the other parties when posing their design
constraints and proposing their solutions

Cooperation doesn’t mean that the conflicts do not arise. It provides mechanisms
for conflict resolution. A disadvantage of exploiting cooperative strategies is that it
brings substantial computational overheads for communication and decision making
among cooperating actors.

2.2.4 Least Commitment
Least commitment strategy stands for deferring the decisions that constrain future
choices for as long as possible. A least commitment strategy thus reduces the number
of conflicts, because, for example, it avoids committing to decisions that are made
based on incomplete information. Otherwise, decisions may be made as soon as they
can be, even if incomplete, arbitrary, or less trusted information is used. As a
consequence, there might be more chance for conflicts to occur in the future, because
such information may turn out to be invalid. It is however not clear how to assess or
to measure a commitment, to ensure it to be as least as possible if the information is
incomplete.

2.2.5 Concurrency in Design
Concurrent design is one of the main themes of the well-established Concurrent
Engineering field. A Concurrent Strategy, in contrast to a Sequential Strategy, carries
out some of the activities in parallel to each other. Concurrency in design gives
freedom to all participants to contribute to the current state of the design in parallel.
As a result, the design process speeds up, because the participants in the design do not
have to wait in a line if they can make a contribution. Possible disadvantage of the
Concurrent approach to design might be the substantial increase in the overhead for
coordination and planning. Moreover, coordination and planning become more
difficult because there are no ideal cases in design for which all the activities are truly
independent and may be rightfully performed in parallel. It is known (see, e.g.,
[NL99]) that there might be various kinds of dependencies between activities. This
implies that there exist only constrained possibilities to their concurrent performance.

2.3 Design Models

The most popular and widely used models for IPD are Axiomatic Design Model,
Systematic Design Model, Decision-Based Design Model.

Axiomatic Design Model is based on the use of the following axioms:
– Independence axiom which suggests maintaining independence between functional

requirements
– Information axiom which suggests minimizing the information content

Systematic Design Model is based on the following principles:
– Engineering design must be carefully planned and systematically executed
– A design method (activity) must integrate many different aspects of engineering

Decision-Based Design Model considers design process as the Cooperative
Problem Solving Activity and suggests using problem solving methods to model

design activities. The projects which use decision-based design model and distributed
problem solving technique in design are surveyed for example in [SB96].

These design models are good in theory, but are not really the methodologies
because they don’t help enough to the implementation in the real world settings.

2.4 What do we Need to Model DEDP, in Practice?

The analysis of the degrees of complexity and the solution strategies in IPD may
suggest that the following frameworks, engineering methodologies and technologies
are required to make the mentioned conceptual findings feasible:
– Dynamic Engineering Design Process Models – to ensure that the design process in

the distributed settings will finally end up with the expected solution and will do it
in an optimal way

– Interoperability solutions (common terminology + tool integration + open systems
+ dynamic environments)

– Dynamic Distributed Planning solutions (brokering, matchmaking, contracting,
task decomposition, solution synthesis)

– Run-time Coordination methodologies (preserving the coherence of goals and
decisions, managing the dynamically changing flow of interdependent activities)

– Dynamic Conflict Resolution techniques (equilibrium between individual
rationality and group rationality, local goals vs common goals of a group,
negotiation)

– Monitoring, credibility and quality assessment frameworks
– Run-time Fault Processing solutions

3 Agent-Based Approach in Design

Agent paradigm in software engineering is one of the powerful means to narrow the
semantic gap between the conceptualizations we use to analyze and to model the
phenomena of the real world and the resulting distributed software system.

Agent paradigm gain more and more popularity as the enabling approach in
modeling dynamic distributed processes in many areas of creative activities, among
which IPD holds its important place. Agents prove to be appropriate to IPD modeling
and simulation because they possess, as a natural part of agency paradigm, very
important features relevant to the implementation of the IPD solution strategies. The
following section summarizes these features of an agent and a multi-agent system.

3.1 What an Agent is?

If compared to the objects in OOSE, which may be interpreted as the analogy of
inanimate entities in the real world, agents generally represent animate objects,
typically – human beings. Intelligent software agents are therefore used when the
software needs to possess some 'human' features like the ability to perceive the
environment and reactivity, apparent pro-active behaviour in succeeding a goal on

behalf of the human owner, ability to learn from their experience, social behaviour.
One of the inherent intelligent features of agents is the ability to form social structures
– teams, communities, coalitions, organizations. A rational agent as the member of a
social structure needs to balance its individual rationality and benevolence in
facilitating to the growth of the group utility. Agents often use negotiation
mechanisms adopted from human encounters for that. An agent also needs to obey its
social commitments and the conventions which regulate the group behaviour within
the social structure. A team or an organization of agents that cooperate in a physically
and, possibly, geographically distributed network form a software system called a
Multi-Agent System (MAS). An agent and a MAS are the main conceptual patterns
of the Agent Oriented Software Engineering (AOSE).

From the engineering perspective, at the lower level of abstraction, the essential
features of agents in MAS are their abilities to communicate with each other and to
coordinate their activities. Coordination means achieving coherence in the group
activities and thus providing that the solution of a problem or the accomplishment of a
task is obtained with less effort, less resources consumed, and better quality.
Communication stands for the ability to exchange the pieces of information within
an encounter in a uniform way and using shared terminology. Communication among
agents in an open system, which are typical in the majority of real world cases in e-
business, enterprise application integration, etc., is a challenging interoperability task.
The solutions are approached by standardizing the communicative languages (e.g.,
FIPA ACL) and developing formal machine-processable representations of the
common terminology in the form of ontologies. Ontologies, formalized in ontology
description languages (e.g., OWL) provide: a conceptualization – a formal model of
the real world phenomena in a Domain; a vocabulary – a set of terms or symbols
identifying concepts; an axiomatization – the rules and the constraints on concepts
and their properties which capture characteristic aspects of the domain.

More details may be borrowed from, e.g. [EP02], [JEN00].

4 Pioneers in Agent-Enabled Design

There are several pioneering projects which used agent paradigm to facilitate
design processes Agents in Design. The following ones are representative in the terms
of the approaches used. All of them have been ended in pre-historic time – before
1996:
– SHADE: Shared Dependency Engineering [MKW93] + PACT: Palo Alto

Cooperative Testbed [CEF93] (Stanford U., Lockheed, HP, Enterprise Integration
Technologies, 1993)

– ACDS: Automated Configuration-Design Service (U Michigan, 1994)
– DIDE: Distributed Intelligent Design Environment (TU Compiegne, 1996)
– ABCDE: Agent-Based Concurrent Design Environment (U. Calgary, 1996)
– SHARE: A Methodology and Environment for Collaborative Product Development

expanding further into: FirstLink, NextLink, ProcessLink (Stanford Centre for
Design Research, EIT Inc., 1996, http://www-cdr.stanford.edu/SHARE/share.html)

– SiFA: Single Function Agents (AI in Design Group at WPI, 1996)

http://www-cdr.stanford.edu/SHARE/share.html

4.1 Shared Dependency Engineering (SHADE) and Palo Alto Cooperative
Testbed (PACT)

SHADE, as reported in [MKW93], is just one but the basic initiative within a larger
cooperative community looking at related issues of distributed CAD/CAE.
SHADE is distinct from other approaches in its “…emphasis on a distributed
approach to engineering knowledge rather than a centralized model or
knowledge base. That is, not only does SHADE avoid the requirement of phys-
ically centralized knowledge, but the modeling vocabulary is distributed as well,
focusing knowledge representation on specific knowledge-sharing needs.” (cf.
[MKW93]).

PACT [CEF93] is a demonstration of and a testbed for both the collaborative
research effort and agent-based technology. SHADE and PACT, inspired by the
work of Gensereth [GEN92], have given the push to the whole constellation of
related initiatives. DARPA Knowledge Sharing Initiative [PFP92] is a community-
wide effort to provide an adequate cross-domain semantic representation
framework. The Lockheed project Knowledge Centered Design [KLS93] focused
more closely on the problem of wrapping existing tools by specialized agents that
were capable to communicate via the SHADE infrastructure. Another project at
Lockheed, called Cosmos [MSO93], focused on providing support for negotiation
and commitment reasoning within the SHADE infrastructure.

As it was reported in [CEF93] the main goal of the SHADE infrastructure and
PACT project was to develop the approach to integrate existing multi-tool systems
that are themselves design frameworks. The approach has been based on the
following practically important constraint: individual engineering groups prefer to use
their own tool suites and integration environments – there is significant investment in
these self-contained systems. Provided the teams involved in design age constrained
as above, the task of the project was to provide the framework for coordination and
integration of such activities among distributed autonomous parts of design teams.
The niche for the PACT results is thus the design projects that involve large segments
of an enterprise or multiply enterprises and are intrinsically multi-disciplinary (please
refer to Section 2.1).

PACT project has been focused to find solutions for:
– Cooperative development of interfaces
– Knowledge sharing among systems
– Computer-aided support for (human) negotiation and decision making

PACT is the multi-agent system comprising agents with different roles. The fist
group are the agents which model different design groups using their own tool suites.
These agents communicate with each other and use for that the common ontology
which represent Shared Design Model (SDM). The opportunities provided by the
SDM are reported as follows:
– A unified model is not needed. Instead tool models are encapsulated by SDM
– Though shared engineering language is needed for communication, it has to cover

the SDM only
One of the outcomes of the project was the conclusion that it might be very hard to

scale the software system which exploits SDM concentrated at the central node which
inevitably becomes the single point of failure. Instead, PACT is built according to a

fully distributed scheme. PACT agents wrap respective design tools and have their
local knowledge bases (LKB). These LKBs contain partial tool-specific knowledge in
the terms of SDM.

Another group of PACT agents are facilitators which actually are the semantic
bridges between the groups of wrapper-agents corresponding to different design
teams and, therefore, having different local knowledge. The facilitators perform the
following specific functions:
– Translate tool-specific knowledge into and out of standard knowledge exchange

language (KIF)
– Provide a layer of reliable message passing (KQML)
– Rout outgoing messages to appropriate destination
– Initialize and monitor the execution

One of the first test cases for PACT evaluation was the running example of a
robotic manipulator design – Fig. 1.

4.2 Distributed Intelligent Design Environment (DIDE)

The focus and the approach of DIDE project is very close to that of PACT and
SHADE. As it was reported in [SB96] the approach of DIDE to large engineering
projects is to decompose the overall task of designing a complex artifact into a set of
different services. Such services are used by local teams which in turn communicate
with other teams. The services are to be assigned both to human and software agents.
Typically such teams would reside at different locations and be specialized in
different aspects in the design of the product. The task of DIDE is to provide the
intelligent environment to wrap the design tools and the design activities of different
participants of the design process. Distributed Intelligent Design Environment is
based on an architecture called OSACA [SB93] which stands for Open System for
Asynchronous Cognitive Agents. The organization of DIDE is very close to PACT.
The principal difference is that in DIDE all agents are “First Class”, i.e. truly
autonomous, communicating directly, without facilitators.

4.3 Automated Configuration-Design Service (ACDS)

As reported in [DB94] ACDS project has focused on a particular types of design
activities – a configuration design. It aimed to provide the solution of configuration-
design problem that achieves the benefits of the concurrent engineering (CE) design
paradigm. The essence of ACDS approach is that design concerns (manufacturability,
testability, etc.) are applied to an evolving design throughout the design cycle. This
approach attempts to identify conflicts early on, which avoids costly redesign and can
lead to better products.

Fig. 1. Running example of a robotic manipulator design (adopted from the
presentation by Greg Milette, CS525M, Spring 2002)

ACDS Framework is based on a distributed dynamic interval constraint satisfaction
problem (DDICSP) model [DB94]. ACDS MAS comprises persistent catalog agents
which map onto DDICSP variables and constraint agents which map onto DDICSP
constraints. These agents:
– Use a set of operations and heuristics to navigate through the space of possible

designs
– Rapidly eliminate sets of designs until a solution is found

ACDS is not a MAS in the traditional sense, but rather a collection of loosely-
coupled, autonomous agents that organize communication among themselves based
on design constraints. These agents represent part catalogs and design constraints, and
consist of catalog agents, system agents, bid agents and constraint agents. ACDS
agent is a computational process:
– With expertise about a limited portion of a design problem
– Capable of achieving specific goals
– Communicating with other agents by passing messages

Agents have the capability to direct other agents to perform operations within the
context of the design representation and algorithm

To use ACDS, a designer needs to provide a high-level specification of the desired
design and further on uses this specification to configure the ACDS network.

Fig. 2. SiFA: Discovering Methodologies for IPD (source [DB94]).

4.4 Single Function Agents (SiFA)

As reported in [SBN98]. The main emphasis of SiFA approach was to elaborate the
agent-based methodology and knowledge repositories for modeling design processes
as collaborative problem solving activities. Design is modeled as a cooperative multi-
agent problem solving task where different agents possess different knowledge and
evaluation criteria (single functions). The multi-agent paradigm intuitively captures
the concept of deep, modular expertise that is at the heart of knowledge-based design.
By implementing the opportunistic strategy in the multi-agent design system, design
methods are dynamically selected from knowledge repository based on:
– The individual agents’ view of the problem-solving situation
– Shared information about the capabilities of agents in the system

Therefore, the design methodology for the class of similar design processes
emerges at run time. The process of design methodology discovery is shown on
Fig. 2.

4.5 Agent-Based Concurrent Design Environment (ABCDE)

Agent Based Concurrent Design Environment is a multi-agent architecture for
implementing concurrent engineering in manufacturing (see, e.g., [BN95]). A proof-
of-concept system based on this architecture has design, manufacturability analysis,
process planning, routing and scheduling as concurrent interacting activities. The
system includes a feature-based design sub-system for prismatic components,
implementing "intelligent features". A supervisory control interface manages shop-
floor resources. Using a simulated environment of four production machines, the

system was tested with prismatic components being simultaneously designed.
Manufacturability evaluation and shop floor planning were being carried out
concurrently. Valid process plans, routing and scheduling were generated.

The above approach can be extended to concurrently include other product life
cycle considerations at the design stage. The modularity and flexibility of this multi-
agent approach can be seen to offer major advantages for implementing concurrent
engineering. ABCDE has been developed with the strong emphasis to the
manufacturing. Manufacturing domain has been further on investigated in
MetaMorph and MetaMorph-II projects (http://imsg.enme.ucalgary.ca/), the
successors of ABCDE.

4.6 SHARE: a Methodology and Environment for Collaborative Product
Development

SHARE project has been broadly concerned with how information technology can
help engineers develop products. Increasingly, product development in-working
together over networks, supported by computation and information services. In
anticipation of this future the project studied engineering teams operating in a
prototype of such an environment. Specifically design teams were engaged who
conceive, refine, and prototype systems for industrial sponsors

The experiences of SHARE lead to the acceptance of the view that team design is
the process of reaching a “shared understanding” (cf. [TCL93]) of the domain, the
requirements, the artifact, the design process and the commitments it entails. This
understanding emerges and is incrementally refined in time as each group or team
member develops their or his or her part of the design and diffuses the information
among the others, which facilitates to their own progress. The process involves
communication, negotiation, and community learning. SHARE focused on enabling
these very activities which were not well supported by current CAD tools by the time
of the project.

4.7 Pioneers: Lessons Learned

Reviewed projects which pioneered agent-enabled approaches to the development of
the automated intelligent and distributed environments to support design processes
have proved that agent paradigm is powerful enough to build feasible solutions. Two
points should be stressed in this context. The first aspect to emphasize is that these
projects aimed not to simulate the design activities, but rather concentrated on the
provision of the enabling infrastructures, environments to support design processes.
The second point is to notice that there is no evidence in the open sources that this
heavy wave of effort in agent-enabled support to concurrent design and engineering
produced any industrial-strength solutions by 2000. Possible reasons for this are:
– Design activities are very difficult to formalize – they are highly intuitive, creative,

non-deterministic, …
– Agent technology was too immature by that time to address such a complicated

issues, namely: powerful yet computationally efficient in resource bounded settings

http://imsg.enme.ucalgary.ca/

formal frameworks for essential features were absent; AOSE methodologies were
at the very beginning of their development; means for consensual knowledge
representation were not sufficient
Since that the research community has concentrated on developing the enabling

solutions both for formalizing the processes of design and for making AOSE more
mature.

5 Enabling Solutions for Modeling Dynamic Engineering Design
Processes

Major difficulties in modeling Engineering Design Processes (EDP), as found out by
the projects reviewed in Section 3, are caused by the facts that EDPs, though well
defined in many domains (e.g. in Semiconductor and Electronic Systems Design), are
still too complex to be rigidly formalized and are highly dynamic in their nature.
EDPs are dynamic according to a number of factors that make it impossible to plan or
to define an EDP in all details before it actually starts:
– Functional decomposition. As the conceptual idea of a design may be

decomposed into the functional blocks in different ways by different designers it is
impossible to define the concurrent threads of this EDP in advance

– Altering capabilities. As the capabilities (the workload and the experience) of the
designers change in time it is not well clear how to plan the optimal configuration
of the flow performers with respect to the accomplishment time, the quality, and
the cost of service.

– Design Solution reuse. As the designs are often re-used or adopted from the other
designs the major technological design steps may vary out of this

– Backtrack loops. As by the result of the verification at any EDP step it might be
necessary to backtrack to one of the previous steps, it is impossible to plan the
number of such loops in advance

– Tool choice. As the characteristics of the different tools which may be used at a
specific design step vary with respect to both productivity and the working
experience a designer has in using these tools, it is hard to predict in advance
which tool will be optimal for the step, and which one will be actually chosen by
the designer. The choice of a tool may of course influence the resulting number of
design iterations at this EDP step.
These factors point to the necessity to take the decisions on the configuration of an

EDP “on the fly”, in line with its actual execution, each time an optimal path should
be chosen from the set of possible alternatives. Agent-based approach may be
appropriate to arrange such Dynamic EDPs (DEDP). The enabling agent-based
solutions were under intensive investigation at least in the following projects. We
place these research activities in two groups: the first one are the projects aiming to
develop agent-based models and frameworks to support design activities; the second
groups the some of the agent-related research, mainly in different aspects of
organizational and environmental dynamics, which results may be further applicable
to model DEDPs.

5.1 New(er) Models for DEDP

The following two projects are characteristic for the attempts to bring more dynamics
to EDP models:
– RAPPID: Responsible Agents for Product-Process Integrated Design (Van

Parunak, Altarum Inc., ARPA MADE funded project, 1999,
http://www.erim.org/cec/rappid/rappid.htm)

– ADN – Agent-Based Decision Network (University of Southern California,
IMPACT Lab, http://impact.usc.edu/projects.htm)

5.1.1 Responsible Agents for Product-Process Integrated Design (RAPPID)
As reported in [PWF99] the goal of the project was to develop DEDP Models based
on the market mechanisms. RAPPID uses a marketplace to establish a price-per-unit
for each characteristic of a design. Agents, representing design project stakeholders
for each component, buy and sell units of these characteristics on a network-based
market server. A component wrapper agent represents a part of the design, buys and
sells characteristics in the market. These component wrappers may be organized in a
hierarchy as the components of the design are themselves in the hierarchy. Agents
may be controlled by a human user. A characteristic is understood as a definable
attribute like weight or power. A characteristic wrapper agent maintains a
marketplace for that item (refer to Fig. 3.).

A component (agent) that needs more latitude in a given characteristic (e.g., more
weight) can purchase increments of that characteristic from another component
(agent). However, it might need to sell another characteristic to raise resources for this
purchase.

The market-based prices of characteristics:
– Reflect the relative scarcity of the various characteristics (that is, which ones

constrain the design more closely)
– Rationalize communication among designers

In some cases, analytical models of the dependencies between characteristics are
used to help designers estimate their relative costs. But even where such models are
clumsy or nonexistent, prices set in the marketplace indirectly define the coupling
among characteristics.

A specific Design Space in terms of RAPPID is the Cartesian product in the
Cartesian space of design characteristics. The characteristics in the Design Space may
be considered slack and constrained. The ratio of characteristic constraint is also
defined by the market prices:
– Low prices mean slack characteristics
– High prices mean constrained characteristics

The approach of RAPPID is to find the proper equilibrium among the possible
allocations of characteristics. A Design Space can be extended, shrank or even
collapsed by buying up certain allocations of characteristics. This may give other
agents more funds, more opportunities to purchase other characteristics instead. This
may in turn cause the amount of certain characteristics to get fewer and converge on a
price. However, Cartesian metaphor works well only if the characteristics are
orthogonal. The main difficulty in formalizing such a Design Space is to determine
the basic set of characteristics.

http://www.erim.org/cec/rappid/rappid.htm
http://impact.usc.edu/projects.htm

Fig. 3. An Example configuration of RAPPID marketplace (source – [PWF99]).

5.1.2 Agent-Based Decision Network (ADN)

ADN [DJ01] is the framework focusing on the collaboration aspect within DEDPs.
The authors analyze the shortcomings of the existing frameworks for design process
support which are prevalently based on the Data Sharing (DS) or Group Decision
Support (GDS). They propose a new principle claim that collaborative design is not
merely about data, but more about the processes of decision making that are carried
out by multiple designers in specific organizational (functional and social) contexts
and involves applications of specific design knowledge.

The ADN view is different from, e.g., GDS in that instead of focusing only on
group meetings, the ADN thinking emphasizes the roles of individuals’ decision
processes and the links between those processes. This distinction is crucial for
concurrent engineering because the key contents of concurrent engineering are
individual designers’ design processes and their coherent links. Group meeting is only
a “snapshot” of the whole process and may not provide a complete understanding of a
concurrent DEDP. The ADN view of concurrent engineering design puts emphasis on
the two key actions each exercised at different levels:
– Decision-making by individual designers using decision-based design process

model
– Coordination between designers on dependent activities

ADN focuses on making designers consider other team members’ decisions when
making their own and attempts to achieve coherent design decisions among designers
by explicitly representing and enhancing individual design decision-making and
negotiation processes. ADN is composed of:
– A decision-based design process model (DDPM) - captures individual designers’

design processes

– An objective-based negotiation model (OBNM) - facilitates objective-based
negotiation and tracks both dependencies generated and decisions made at each
design stage for downstream negotiation support

– A number of intelligent agents, each associated with a human designer - generate
and utilize the DDPM and OBNM information to support their designers

5.2 More Generic Enabling Solutions

The frameworks and the technologies obtained in many agent-related research
projects, mainly in different aspects of organizational and environmental dynamics,
may be as well beneficiary to better model DEDPs. Some examples of such projects
are surveyed below:
– B-MAN: Business Mobile Agent Network (IST-2001-32285, http://www.b-

man.org/)
– COMMA: Corporate Memory Management through Agents (IST, 2000,

http://www.si.fr.atosorigin.com/sophia/comma/)
– E-COLLEG: Advanced Infrastructure for Pan-European Collaborative Engineering

(IST-1999-11746, Jan. 2000 - Dec. 2003, http://www.ecolleg.org)
– MACRO: A tool to support Distributed Multi-disciplinary Design and

Optimization (EPSRC Project (GR/L91245) June, 1998 – June, 2001,
http://www.cranfield.ac.uk/coa/macro/)

– LEAP: Lightweight Extensible Agent Platform (IST-1999-10211, http://leap.crm-
paris.com/infos.html)
Of course, lots of more successful research, technology transfer and development

activities are on their course. Some references are, e.g., available from the Projects
database of AgentLink network of Excellence (http://www.agentlink.org/resources/
agentprojects-db.php).

5.2.1 Decentralized Workflow Engine
B-MAN project develops a software platform that aims at enabling the definition,
enactment and management of cross-organizational business processes on top of
Internet, combining:
– A decentralized agent-based workflow engine
– Secure and trusted contract-based business interactions

The features that make B-MAN different from the previous workflow solutions
are:
– A fully decentralized workflow process control engine
– Explicit support for mobile computing

B-MAN platform provides trustworthy (as opposed to merely secure) cross-
organizational process enactment.

5.2.2 Interoperability in CKM, CSCW
As reported in [GPR02] the emphasis of the COMMA project is the agent-based
solutions for interoperability provision in distributed systems in Corporate Knowledge
management (CKM) and Computer Supported Collaborative Work (CSCW). The

http://www.b-man.org/
http://www.b-man.org/
http://www.si.fr.atosorigin.com/sophia/comma/
http://www.ecolleg.org/
http://www.cranfield.ac.uk/coa/macro/
http://leap.crm-paris.com/infos.html
http://leap.crm-paris.com/infos.html
http://www.agentlink.org/resources/%0Bagentprojects-db.php
http://www.agentlink.org/resources/%0Bagentprojects-db.php

Fig. 4. Agent-enabled CMM in COMMA project (source –
http://www.si.fr.atosorigin.com/sophia/comma/Documents/English/Final Paper.doc)

goal of the project is to implement and test a Corporate Memory management
framework integrating several emerging technologies:
– Agent technology
– Knowledge modeling
– XML technology
– Information retrieval
– Machine learning techniques

The project intends to implement the system in the context of two scenarios:
– Enhance the insertion of new employees in the company
– Perform processes that detect, identify and interpret technology movements and

interactions for matching technology evolutions with market opportunities to
diffuse among employees innovative ideas related to technology monitoring
activities
COMMA agents’ interoperation within these two scenarios is conceptually

sketched out in Fig. 4.

5.2.3 Advanced Infrastructures for Collaborative Design
The goal of the E-COLLEG project is to provide a new paradigm platform for
distributed collaborative engineering through the definition and implementation of an
advanced infrastructure for collaborative engineering – Advanced Collaboration
Infrastructure (ACI) [KMP03]. The components of ACI are:
– Basic Collaborative Services
– Advanced Tool Registration and Management Services (TRMS)
– XML-based Integration Technologies
– Collaborative Extensions (wrappers) to Design Tools

http://www.si.fr.atosorigin.com/sophia/comma/Documents/English/Final%20Paper.doc

E-COLLEG aims at the definition of the infrastructure and technology for such
services developed from industrial applications in the field of embedded systems
design. Moreover, the project studies common practices and metrics for Engineering
Design Activities (EDA) workflow improvement.

In contrast to current industrial practice and available frameworks, this
infrastructure and technology will consist of a set of interacting, location transparent
services that can be dynamically configured and adapted to arbitrary tool
configurations and location-independent design teams (changed consistency of the
design team, transfer/delegation of tasks etc.) at run-time.

The project also develops a distributed simulation technology with collaborative
verification extensions transparently linking geographically distributed designers into
a concurrent verification session.

5.2.4 Networked CSCW Methodologies
MACRO project concept [MPD00] is based round the assumption that future design
teams will become more distributed in nature as industry exploits the Internet and
other integrated communication and data exchange systems. This concept is part of an
attack on the problems associated with the total process of Distributed Multi-
disciplinary Design and Optimization (DMDO). The concepts developed by the
project rely on the creation of distributed self-building and self-organizing teams
made up from members who are globally distributed. MACRO resulted in the
implementation of the prototype software tool to support their approach to DMDO
operating over the Internet. MACRO concept uses a kind of a distributed task model
to support DMDO.

5.2.5 Agent Services to Support Mobile Enterprise Workforce
The LEAP project addresses the need for open infrastructures and services which
support dynamic, mobile enterprises. In this context the technology developed by
LEAP may be used as the enabling infrastructural solution for modeling and
managing DEDPs. LEAP developed agent-based services supporting three
requirements of a mobile enterprise workforce:
– Knowledge management (anticipating individual knowledge requirements),
– Decentralized work co-ordination (empowering individuals, coordinating and

trading jobs)
– Travel management (planning and coordinating individual travel needs).

Central to these agent-based services is the need for a standardized Agent Platform.
LEAP developed an agent platform that is: lightweight, executable on small devices
such as PDAs and phones; extensible, in size and functionality; operating system
agnostic; mobile team management application enabling, supporting wired and
wireless communications and FIPA (http://www.fipa.org/) compliant.

6 Conclusions

The review of the extensive sources on the DEPD modeling and simulation has shown
that AI research community has systematically attacked the problems of design

http://www.fipa.org/

domain by attempting to engineer systems and infrastructures that are capable of
supporting humans in accomplishing tasks that require intelligence since the early 90-
ties. However, the complete process of design has not been fully automated yet in a
satisfactory way, though some attempts have been undertaken. These attempts have
used agents (an engineering sub-area of AI) to create intelligent software
infrastructures to support design processes performed by distributed teams and
comprising contributions from various disciplines.

The report surveyed the research activities in the outlined area covering:
– Known models, modeling approaches and agent-based implementations addressing

or relevant to design process modeling and simulation
– Research projects which have produced some valuable results contributing to the

state-of-the-art in the domain
The report also provided the references to the leading research facilities in the area of
agent-based design process modeling, listed the most relevant research papers and
analysed the known approaches which may be applicable to model design activities in
SES design. The general impression resulting from the analysis of the state-of-the-art
points to the fact that the renaissance in Agent-Enabled Engineering in early 90-s
demonstrated by the constellation of the pioneering projects in the domain has
unfortunately ended up with NO SILVER BULLET1. The successors of the
mentioned projects, though been declared (e.g., Design Space Colonization (DSC,
http://www-cdr.stanford.edu/DSC/), Engineering Design Modeling (EDM,
http://impact.usc.edu/KICAD/projects.htm), have either gone to industry (classified)
or provide no evidence of substantial progress in the open sources.

Academic research is centered on the development of the enabling solutions,
methodologies and infrastructures for DEDP. The state-of-the-art in the field points to
the fact that it might be not really feasible to simulate creative human activities by the
available methodologies, e.g., for problem solving. Though some pioneering
publications appear in attempts to formalize designers’ creativity (e.g., John S. Gero
et al., Key Centre of Design Computing and Cognition, University of Sydney NSW
2006, Australia [GS02]), it might be more rational to focus on the optimizing of the
collaborative work of a designers’ team. This is also a challenging problem because
the solution must:
– Deal with the inherent DEDP dynamics and the non-determinism of its

environment
– Provide mechanisms for Conflict Resolution, Backtracking, Negotiation, e.g., the

formalism for negotiation in Engineering Design [SC99]
– Enable optimal Contracting in the Design Space
– Provide means for the monitoring of capabilities, credibility, quality of service

exposed by freelance executives
– Facilitate to Teamwork Coordination and Planning in resource bounded settings

In order to approach such a solution it is necessary to accurately formulate the
goals, to constrain the task – i.e. to shrink the Design Space, but with the least
commitment possible. Then, feasible solutions will be produced with less effort.

1 A SILVER BULLET is a methodology or a technology which expressivenes may enhance the

productivity in the Domain by the order of magnitude.

http://www-cdr.stanford.edu/DSC/
http://impact.usc.edu/KICAD/projects.htm

References

[BN95] Balasubramanian, S. and Norrie, D. H.: A multi-agent intelligent design system
integrating manufacturing and shop-floor control. In: Proc. First Int. Conf. on Multi-Agent
Syst., San Francisco, pp. 3-9, 1995

[CEF93] Cutkosky, M.R., Engelmore, R.S., Fikes, R.E., Genereseth, M.R., Gruber, T.R.,
Mark, W.S., Tenenbaum, J.M. and Weber, J.C.: PACT: An Experiment in Integrating
Concurrent Engineering Systems. IEEE Computer 26(1), p. 28-38, 1993

[DB94] Darr, T. P., Birmingham, W. P.: An Attribute-Space Representation and Algorithm
for Concurrent Engineering. CSE-TR-221-94, The University of Michigan, Department of
Electrical Engineering and Computer Science, Ann Arbor, Michigan 48109-2122, 1994

[DJ01] Danesh, M. R. and Jin, Y.: An Agent-Based Decision Network for Concurrent
Engineering Design. CERA 9(1), 2001, pp 37-47

[EKK04] Ermolayev, V., Keberle, N., Kononenko, O., Plaksin, S., Terziyan, V.: Towards a
framework for agent-enabled semantic web service composition. Int. J. of Web Services
Research, 2004, to appear, http://eva.zsu.zp.ua/eva_personal/PS/JWSR-04-ZSU-UJF-Draft-
Final.pdf

[EP02] Ermolayev, V. A., Plaksin, S. L.: Cooperation Layers in Agent-Enabled Business
Process Management. Problems of Programming 1-2 (2002) 354-368

[FOR69] Forrester, J. W.: Urban Dynamics, MIT Press, 1969
[GEN92] Genesereth, M.: An Agent-Based Framework for Software Interoperability. In: Proc.

of the DARPA Software Technology Conference, Meridian Corporation, Arlington, VA.
1992.

[GPR02] Gandon, F., Poggi, A., Rimassa, G., Turci P.: Multi-Agent Corporate Memory
Management System. In: Engineering Agent Systems: Best of "From Agent Theory to
Agent Implementation (AT2AI)-3", Journal of Applied Artificial Intelligence, Vol. 16, No
9-10. Oct. – Dec. 2002, Taylor & Francis, p. 699 – 720.

[GS02] Gero, J.S. and Sosa, R. (2002) Creative design situations. In: Eshaq, A., Khong, C.,
Neo, K., Neo, M. and Ahmad, S. (Eds), CAADRIA2002, Prentice Hall, New York, 2002,
pp. 191-198. http://www.arch.usyd.edu.au/%7Ejohn/publications/2002/
02SosaGeroCAADRIA.pdf

[JEN00] Jennings, N. R.: On Agent-Based Software Engineering. Artificial Intelligence, 117
(2) (2000) 277-296

[KLS93] Kuokka, Livezey, Simoudis, and Hood: Knowledge-Centered Design. Lockheed
Artificial Intelligence Center, Technical Report, 1993.

[KMP03] Kostienko, T., Mueller, W., Pawlak, A., Schattkowsky, T.: Advanced
Infrastructure for Collaborative Engineering in Electronic Design Automation. In: Proc.
10th ISPE Int. Conf. on Concurrent Engineering: Research and Applications, Madeira
Island, Portugal, 26-30.07.2003.

[MKW93] McGuire, J. G., Kuokka, D. R., Weber, J. C., Tenenbaum, J. M., Gruber, T. R.,
and Olsen G. R.: SHADE: Technology for knowledge-based collaborative engineering.
Concurrent Engineering: Research and Applications, 1(3), 1993.

[MPD00] Morris, A.J., Payne, K.H., Deasley, P.J., Evans, S., Fielding, J.P., Guenov, M.,
Syamsudin, H., Thorne, J.: MACRO - A Tool To Support Distributed MDO. In: Proc.
AIAA/NASA/USAF/ISSMO Symposium on Multi-Disciplinary Analysis and Optimization,
Long Beach, CA, Sept 2000. http://www.cranfield.ac.uk/coa/macro/aiaapa~1.pdf

 [MSO93] Mark, Schlossberg, Ogata, MacGregor, Kuokka, Hyde, and Livezey: The
Cosmos System for Distributed Design Negotiation Support. Lockheed Artificial
Intelligence Center, Technical Report, 1993.

[NL99] Nagendra Prasad, M. V., and Lesser, V. R. (1999) Learning situation-specific
coordination in cooperative multi-agent systems. Autonomous Agents and Multi-Agent
Systems. 2(2), 1999, p. 173-207

http://eva.zsu.zp.ua/eva_personal/PS/JWSR-04-ZSU-UJF-Draft-Final.pdf
http://eva.zsu.zp.ua/eva_personal/PS/JWSR-04-ZSU-UJF-Draft-Final.pdf
http://eva.zsu.zp.ua/eva_personal/PS/JWSR-04-ZSU-UJF-Draft-Final.pdf
http://www.arch.usyd.edu.au/%7Ejohn/publications/2002/02SosaGeroCAADRIA.pdf
http://www.arch.usyd.edu.au/%7Ejohn/publications/2002/02SosaGeroCAADRIA.pdf
http://www.arch.usyd.edu.au/%7Ejohn/publications/2002/02SosaGeroCAADRIA.pdf
http://www.cranfield.ac.uk/coa/macro/aiaapa%7E1.pdf

[PFP92] Patil, R.S., Fikes, R.E., Patel-Schneider, P.F., McKay, D., Finin, T., Gruber, T.,
and Neches, R: The DARPA Knowledge Sharing Effort: Progress report. In: C. Rich, B.
Nebel, and W. Swartout (eds), Principles of Knowledge Representation and Reasoning:
Proceedings of the Third International Conference, Cambridge, MA, Morgan
Kaufmann. 1992.

[PWF99] H.V.D. Parunak, A. Ward, M. Fleischer, and J. Sauter: The RAPPID Project:
Symbiosis between Industrial Requirements and MAS Research. Autonomous Agents and
Multi-Agent Systems 2:2 (June 1999), 111-140

[SB93] Scalabrin, E. and Barthes, J.-P.: OSACA, une architecture ouverte d’agents cognitifs
independants. In: Actes de la 2-eme Journee Nationale du PRC-IA sur les Systemes Multi-
Agents, Montpellier, France, 1993

[SB96] Shen W. & Barthes J.-P. An Experimental Multi-Agent Environment for Engineering
Design, Int. J. of Cooperative Information Systems, 5(2-3), pp 131-151, 1996

[SBN98] Shakeri, C., Brown, D.C., Noori, N.: Discovering Methodologies for Integrated
Product Design. Proc. Artificial Intelligence and Manufacturing: Second Bi-annual AI &
Mfg Workshop, Albuquerque, New Mexico, 1998.

[SC99] Scott, M.: Formalizing Negotiation in Engineering Design. PhD thesis, California
Institute of Technology, Pasadena, CA, June 1999. http://citeseer.nj.nec.com/
scott99formalizing.html

[SIM69] Simon, H.: The Sciences of the Artificial. MIT Press, Cambridge, 1969.
[TCL93] Toye, G., Cutkosky, M.R., Leifer, L.J., Tenenbaum, J.M. and Hlicksman, J.:

SHARE: A Methodology and Environment for Collaborative Product Development. In:
Post-Proceedings of the IEEE Infrastructure for Collaborative Enterprises. CDR-TR #
19930507, 1993, ftp://dart.stanford.edu/CDR/Publications/Reports/Share.ps

[VAN99] Váncza, J.: Artificial Intelligence Support in Design: A Survey. Keynote paper at the
1999 International CIRP Design Seminar, Kluwer, 1999. http://www.sztaki.hu/~vancza/
papers/AIsurvey1.pdf

http://www.hds.utc.fr/%7Ebarthes/DAI-eng/projets/Papers/ijicis.ps
http://www.hds.utc.fr/%7Ebarthes/DAI-eng/projets/Papers/ijicis.ps
http://citeseer.nj.nec.com/scott99formalizing.html
http://citeseer.nj.nec.com/scott99formalizing.html
ftp://dart.stanford.edu/CDR/Publications/Reports/Share.ps
http://www.sztaki.hu/%7Evancza/%0Bpapers/AIsurvey1.pdf
http://www.sztaki.hu/%7Evancza/%0Bpapers/AIsurvey1.pdf

