3rd International Conference on Industrial Applications of Holonic and Multi-Agent Systems HOLOMAS 2007 3-5 September 2007, Regensburg, Germany

Applications of Virtual Reality in Design and Simulation of Holonic Manufacturing Systems A Demonstration in Die-Casting Industry

MERT BAL and MAJID HASHEMIPOUR

Eastern Mediterranean University
Department of Mechanical Engineering,
Famagusta, North Cyprus, Mersin 10, Turkey

Overview

- Key Concepts
- □ Holonic Manufacturing Systems (HMS)
- Virtual Reality (VR)
- ☐ The VR-HMS methodology
- Modeling and Operations
- Implementations
- Conclusions

Agility

- Defined as; the capability of surviving and prospering in a competitive environment of continuous and unpredictable change by reacting quickly and electively to changing markets.
- an agile manufacturing system is required to be scalable, robust and re-configurable to cope with the <u>disturbances</u> within the market demands and the manufacturing system itself.

Holonic Manufacturing Systems

- An intelligent manufacturing paradigm developed for agility in manufacturing.
- Organizing manufacturing activities in decentralized control architecture to meet the agile, scalable and fault tolerant requirements.
- Overcomes many difficulties faced by existing conventional CIM systems.

Holonic Manufacturing Systems

- Behavior is not deterministic
- Direct experimental testing is expensive
- The implementation requires,
 - High investment
 - A lot of expertise
 - Careful decisions to ensure that the highly automated system will successfully satisfy the demands.

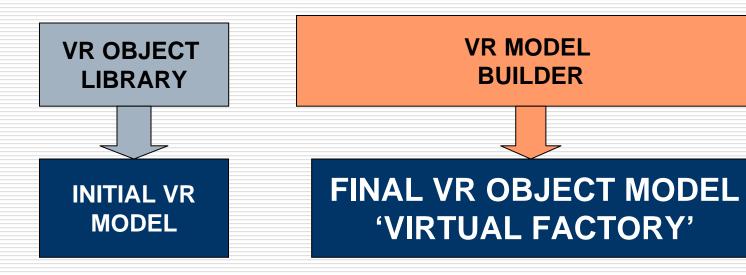
The Virtual Reality (VR)

- is a synthetic environment providing a sense of reality and an impression of 'being there'.
- an environment to understand the statistical outcome of the simulation with realistic modeling of implementation.
- Helps solving problems in manufacturing applications before being employed in practice,
- prevents costly mistakes.

VR Applications in Manufacturing

- Simulation of Manufacturing Operations, Offline Robot Programming, CAD, CAPP, Facility layout planning, training...
- □ Packages available such as; DELMIATM: QUEST, IGRIP, VisFactoryTM...
- Applications designed for <u>centralized control</u> <u>architectures</u>.

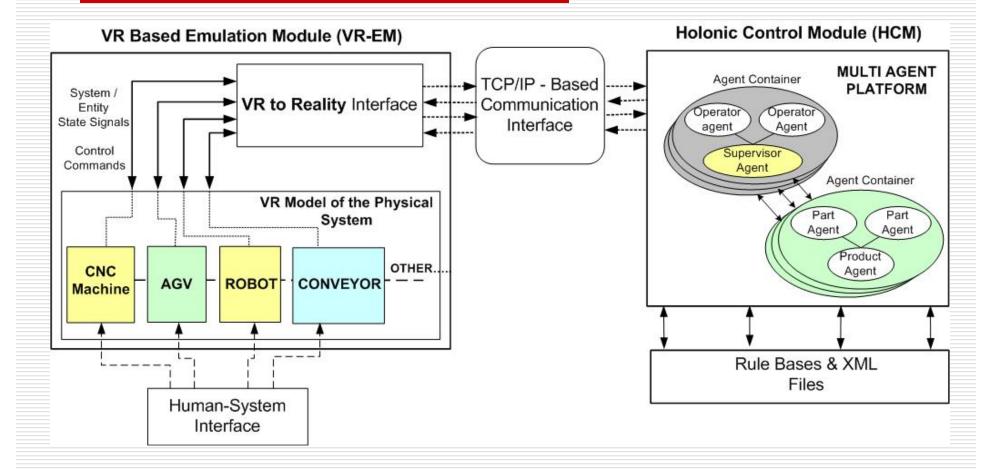
The VR for HMS Simulation


OPERATIONS ENVIRONMENT DESIGN ENVIRONMENT MULTI AGENT SYSTEM VIRTUAL REALITY MODEL OPERATIONS ENVIRONMENT VIRTUAL REALITY MODEL **USER INTERACTION**

Holonic control system design environments

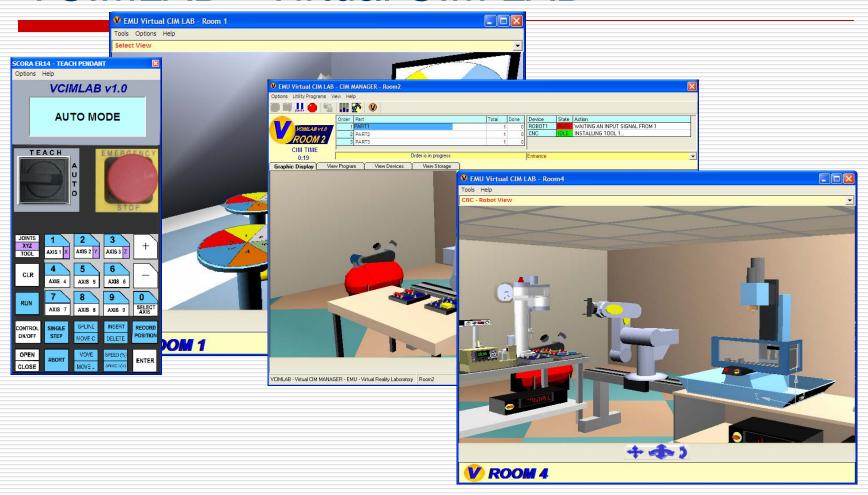
- The holonic agent in this research is an extended JADE agent.
- □ JADE: Java Agent DEvelopment Framework, an open source agent platform that provides a library of Java classes that allow creating agents with application-specific attributes and behaviour with capabilities to send and receive FIPA messages (http://jade.cselt.it/).
- fully implemented in Java language.

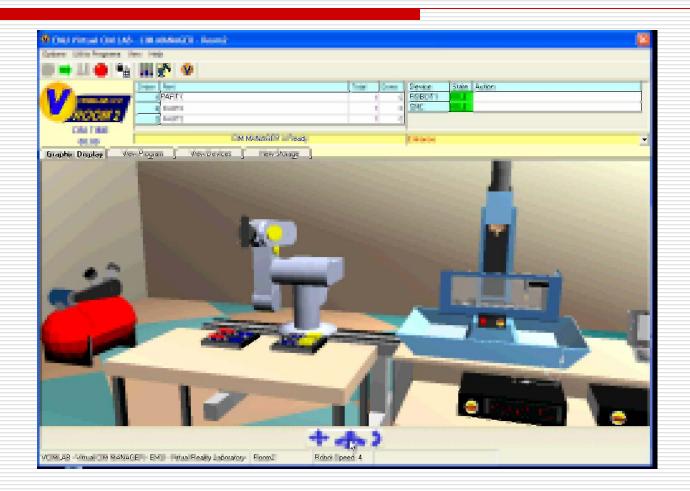
VR Modeling Environment


The VR model is constructed in a way to represent the current physical operations within the factory.

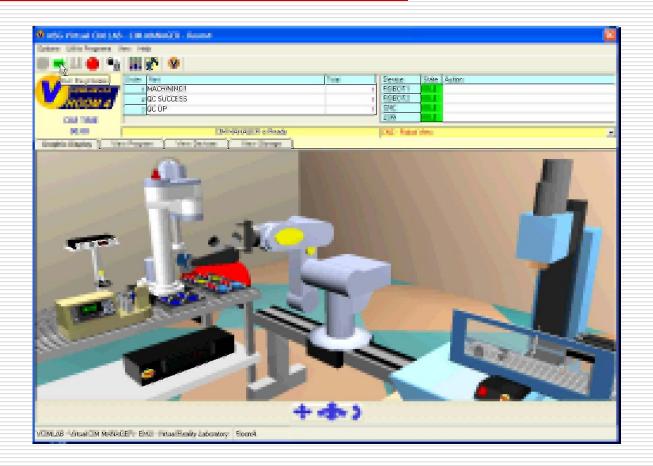
Operations Environment

- simulates the designed system model for the various operating conditions in a digital platform.
- bounds the holonic control architecture models into the VR models of the manufacturing devices.
- Failure generation schemes are applied for understanding the robustness of the designed system model with decentralized control architecture


Operations Environment


Implementation

- □ A prototype tool VCIM-HOLONIC has been developed to realize the features outlined in the methodology
- ☐ Built on top of Open GL in C++ and JADE in Java
- □ A sample implementation has been performed in a mediumsize die casting manufacturing factory in Turkey.
- The existing manufacturing system has been modelled and simulated for the implementation of fully automated die casting cells.
- A Holonic control architecture has been implemented for self-organization of the die-casting cells in the case of breakdowns and rush orders.


VCIMLAB - Virtual CIM LAB

VCIMLAB to VCIM-HOLONIC

VCIMLAB to VCIM-HOLONIC

Conclusions

- □ VR enhances the design, analysis and testing phases of automation and system implementations into manufacturing enterprises.
- □ VR environment provides visual animation where certain patterns (e.g. inventory build-up, blockages in flow) can be quickly seen. This is an important feature, especially in demonstrating the response of HMS to the factory management.
- physical configuration of the floor and study the effects of changes (e.g. distance between machines, speed of material handling systems) can be done easily.
- ☐ The framework provides an ability to quickly conduct controlled and repeatable experiments for comparative visual feedback on the operational differences.

Thank You

Mert Bal

Eastern Mediterranean University
Department of Mechanical Engineering,
Famagusta, North Cyprus, Turkey

E-mail: mert.bal@emu.edu.tr

