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Abstract 
For a propositional metric temporal calculus PTC(MT) based on the known language of a 
propositional metric temporal logic introduced by Arthur Prior defined are negation normal form 
(n.n.f.) and FnPn-normal form (FnPn-n.f.) of a PTC(MT) formula. Proved is existence of n.n.f. and 
FnPn-n.f. for arbitrary PTC(MT) formulae. Beth-Kripke semantic tableaux method is used to prove 
completeness and soundness of PTC(MT). 

 
1. Introduction 
Knowledge engineering is one of the fields of artificial intelligence, 

focusing in knowledge mining and formalization [1, pp.59-61]. One of the approaches 
to present a domain of interest - ontological engineering – considers conceptual 
structures (also called intensional conceptualizations) of the domain and presents them 
in ontology. According to Guarino [2] “ontology is a logical theory accounting for the 
intended meaning of a formal vocabulary”. Ontologies as formal theories are often 
expressed in some logical language, varying from language of first-order predicate logic 
(e.g. Knowledge Interchange Format – KIF) to the family of Description Logics 
(dealing with unary and binary predicates only). 

Most of the languages used for ontology description are static, i.e. they 
consider an intensional conceptualization of an arbitrary domain in a static manner. 
However the real world is dynamic and evolution may influence conceptualization of 
the domain as well.  

One of the ways to incorporate the dynamic nature of the domain into an 
information system focuses on the usage of an aletic modal logic for declaration of 
“allowed” states of affairs within this domain [3]. According to the approach of [3] an 
extensional conceptualization (which in terms of [2] consists of domain concepts 
instances/relationships) is allowed to change only as prescribed by the “dynamics” 
axioms of a formal theory based on the aletic modal logic language.  

However in [3, p.154] it is outlined that of great importance is the dynamic 
nature of the intensional conceptualization itself.  

Incorporating such evolving intensional conceptualizations into 
information systems one may require to analyze changes occurring in that 
conceptualization at a certain point of time, to trace a history of a concept/relationship 
within the sequence of conceptualizations of the same domain, to discover logical 
equivalence/subsumption of ontologies describing intensional conceptualizations of the 
same domain at different time points. 

Extension of a logical language for the ontology description with an 
explicit notion of time is the way to provide the aforementioned analysis in the 
declarative way.  

Temporal logic is a kind of symbolic modal logic [4] dealing with domain 



description statements, which are interpreted over the time flow, either point-based or 
interval-based.  

The reviews of known logical systems involving temporal modalities can 
be found in [5], [6], [7]. Among these systems are Lemmon’s minimal system Kt (with 
the unary operators F – “somewhere in the future”, G – “always in the future” and their 
mirrors), von Wright system “And then” (the binary operator Tw, and basic construct 
pTw q – “p and then q”), Scott’s system “And next instant” (the unary operator Ts, basic 
construct Ts p – “in the next time point will be p”). 

Of special interest is the metric temporal logic [4] with modalities Fn (“it 
will be the case after n time points”) and Pn (“it was the case n time points ago”), which 
allow to explicitly state at what time point an event occurs. 

 
2. Problem formulation 
Let’s consider an example of a correct formula of the metric temporal 

logic. Formula Fn(p⊃ q), where p is a propositional variable for the sentence “to be 
child”, and q is a propositional variable for the sentence ”to be human” means that in n 
time points (after the current time point) it will be true that being a child implies being a 
human.  

Reasoning tasks over such formulae includes satisfiability checking of 
arbitrary formula of the metric logic, or, in other terms, whether this formula has a 
model. Back to example, one may check satisfiability of the formula Fnq or Fn )( qp ∧ . 

The aim of the presented research is to construct the correspondent 
calculus, its interpretation and the inference mechanism to check existence of the model 
for arbitrary formulae.  

The paper presents propositional metric temporal calculus PTC(MT) based 
on the known language of propositional metric temporal logic LMP [4].  Main 
properties of this calculus are analyzed, namely completeness (whether all logically 
valid formulae of a formal theory are theorems of that theory) and soundness (which 
means that the formal theory does not allow to prove both a theorem and its 
contradiction).  

For these purposes we need to adopt a technique called tableaux (namely, 
Beth’s semantic tableaux method [8]), which is usual for proving completeness and 
soundness of a modal logic [8]. The survey of tableau systems for modal and temporal 
logics may be found in [9]. Adaptation of the method for von Wright system “And then” 
(including its quantified extension) was done by Solodukhin in [10]. 

Tableau rules usually operate on a formula containing negation only for 
atomic subformulae. Thus we need to define negation normal form (n.n.f.) for 
PTC(MT).  

Introduction of the temporal modalities Fn and Pn will influence the initial 
set of tableau rules to deal with formulae containing these modalities. We will introduce 
FnPn-normal form (FnPn-n.f.) of a PTC(MT) formula and prove the existence of n.n.f. 
and FnPn-n.f. for arbitrary PTC(MT) formulae. The set of time points will be 
considered as the set of integers.  

 



3. Results 
Propositional metric temporal calculus considers time having linear 

discrete structure, infinite into the past and to the future, assumes that time points are 
organized with reflexive and transitive ordering relation. 

Such structure of time is isomorphic to the structure <Ζ, , where Ζ  - is a 
set of integers, and < - is a strict ordering relation. 

3.1 Alphabet, formulae, axioms, deduction rules 
The alphabet of PTC(MT) consists of: 

(а) Propositional variables ,...,,, srqp  ; 
(b) Primitive propositional connectives ⊃¬, , and additional connectives ≡∨∧ ,, , 
defined over primitive ones in the usual way; 
(c) Temporal operators Fn, Pn (Fn – « it will be the case after n time points», Pn – «it 
was the case n time points ago»); 

PTC(MT) terms are: 
(а)  ,...,, 21 ννν  are natural numbers and «0»; 
(b)   are numerical variables; ,...,,...,, 11 jjii
(c) if  are natural numbers and «0» or numerical variables, and mnn ,...,1 θ – m-ary 
operator, then ),...,( 1 mnnθ  – is a term.  

Formulae are constructed following the rules: 
(a) Every propositional variable is a formula; 
(b) If ϕ  and ψ  are formulae, then ϕ¬ , ψϕ ⊃ , ψϕ ∧ , ψϕ ∨ , ψϕ ≡  are also formulae; 

(c) If mPr  is a predicate letter denoting m-ary predicate, defined over integers (e.g., 
«=», «>»,…), and  – are terms, then  - is a formula; mnn ,...,1 ),...,(Pr 1 m

m nn
(d) If ϕ  – is a formula, then ϕFn , ϕPn , ϕi∃ , ϕi∀  – are also formulae. 

Alphabet of PTC(MT) is defined. 
Definition 1. 
Numerical variable i occurs free in a formula ϕ , if it is not within the 

scope of any quantifier in ϕ .  

Definition 2. 
Term n is free in a formula ϕ   for a numerical variable j, if there are no 

free occurrences of j in ϕ , such that j is within the scope of any quantifier mi∀ , where 
 is a numerical variable in the term n.  mi

PTC(MT) axioms set will consist of all axioms of the propositional 
calculus and some axioms of temporal logic, taken from [4],[6],[7]. 

Following formulae are axioms (propositional axioms are correspondent to 
L4 system, see [11, p.49]): 



(A1)  )( pqp ⊃⊃ ; 
(A2)  ))()(())(( rpqprqp ⊃⊃⊃⊃⊃⊃ ; 
(A3)  pqp ⊃∧  
(A4)  qqp ⊃∧  
(A5)  )( qpp ∨⊃  
(A6)  )( qpq ∨⊃  
(A7)  ))(( qpqp ∧⊃⊃  
(A8)  ))(()(()( qrpqrqp ⊃∨⊃⊃⊃⊃  
(A9) ))(()( pqpqp ¬⊃¬⊃⊃⊃  
(A10)  pp ⊃¬¬  
(AMT1) )())(( FnqFnpqpFn ⊃⊃⊃¬¬ – logical homogeneity in the future 
(АМТ1.1) )())(( PnqPnpqpPn ⊃⊃⊃¬¬ – logical homogeneity in the past 
(AMT2) ppPnFn ⊃¬¬   
(АМТ2.1) ppFnPn ⊃¬¬  
(AMT3) iFmFipiFipFm ∃⊃∃  
(АМТ3.1)  iPmPipiPipPm ∃⊃∃

(AMT4) iFmPipiPipFm ∃⊃∃  
(AMT4.1)  iPmFipiFipPm ∃⊃∃

(AMT5) FmFnppnmF ⊃+ )(  
(AMT5.1) PmPnppnmP ⊃+ )(  
(AMT6) pFnFnp ¬⊃¬  – infinity into the future 
(AMT6.1) pPnPnp ¬⊃¬ – infinity into the past 
(AMT7) FnppFn ¬⊃¬  – nonbranching in the future 
(АМТ7.1) PnppPn ¬⊃¬  – nonbranching in the past 
(AMT8) pnmFFmFnp )( +⊃  – transitivity in the future 
(АМТ8.1) pnmPPmPnp )( +⊃  – transitivity in the past 
(AMT9) )()( FkpFmPnpknm ⊃⊃+=  – iteration of temporal modalities 

Propositional axioms are independent with respect to PTC(MT), the same 
applies for temporal axioms. 

Deduction rules for calculus PTC(MT) are: 

(R1) 
ψ

ψϕϕ ⊃,   – Modus Ponens 



(R2) 
)/(

)(
γψ

ϕ
p
p    – substitution rule (ψ  is obtained after replacing in ϕ  all 

occurrences of a propositional variable  p with formula γ ) 

(R3) 
ϕ

ϕ
¬¬Fn

 – the rule of deriving “always in the future” 

(R4) 
ϕ

ϕ
¬¬Pn

 – the rule of deriving “always in the past” 

Let ϕ  be a PTC(MT) formula that does not contain numerical variable i, ]/[ ijϕ  
be a PTC(MT) formula with all free occurrences of a numerical variable j replaced with 
i. Then the following deduction rule may be applied: 

(R5) 
ϕ

ϕ
i

ij
∀

]/[   – the generalization rule 

If ϕ  is a PTC(MT) formula which contains numerical variable i, and ]/[ niϕ  be a 
PTC(MT) formula with all occurrences of a numerical variable i replaced with term n, 
which is free for i in ϕ , then the following deduction rule may be applied: 

(R6) 
]/[ ni

i
  ϕ
ϕ∀  

Calculus is constructed. 
Throughout this paper we restrict the discussion with binary operations 

“+”, “–” for PTC(MT) terms construction and use the only binary predicate 
“=”(“equality”).  

 
3.2 Investigation of the properties of PTC(MT).  
There are several theorems provable in the PTC(MT), which will facilitate 

further analysis of completeness and soundness of this calculus. All the theorems T1-
T25 are proved by the rule of contraries. 

Theorem 1. 
(Т1) |⎯ FnqFnpqpFn ∧≡∧ )(  
Proof: necessity is proved with the help of AMT6, the consequence of the 

deduction theorem (see [11, p.40, consequence 1.9 (i)], the deduction theorem. 
Sufficiency is proved using the definition of ⊃∧∨ ,,  , A4, AMT1, AMT7. 

Theorem 2.  
(T2) |⎯ PnqPnpqpPn ∧≡∧ )(  
Theorem 3.  
(Т3) |⎯ FnqFnpqpFn ∨≡∨ )(  
Proof: necessity is proved with the help of the definition of , A10, 

AMT6, АМТ7, АМТ1. Sufficiency is proved, basing on the definition of , 
∨

∨



distributive law for , A10, AMT6, АМТ7, Т1.  ∨∧,
Theorem 4.  
(Т4) |⎯ PnqPnpqpPn ∨≡∨ )(   
Theorem 5. 
(T5) |⎯ )()( FkpFmPnpknm ≡⊃+=  
Proof: )()( FkpFmPnpknm ⊃⊃+=  is the axiom АМТ9. Sufficiency ( 

|⎯ )()( FmPnpFkpknm ⊃⊃+= ) is proved with the help of the definition of ∨ , A10, 
AMT6, АМТ7, АМТ5, АМТ2. 

Theorem 6. 
(T6) |⎯ )()( PkpFmPnpmkn ≡⊃+=  
Proof: necessity can be proved using the definition of , АМТ5.1, A10, 

AMT6, АМТ7, АМТ7.1, АМТ2.1. Sufficiency is proved using the definition of ∨ , 
АМТ6, AMT7, АМТ5.1, A10, AMT6, АМТ7. 

∨

Theorem 7. 
(T7)  |⎯ )()( PkpPmFnpnkm ≡⊃+=  
Theorem 8. 
(T8)  |⎯ )()( FkpPmFnpmkn ≡⊃+=  
Proof of  the theorems T7 and T8 is analogous to proof of T5 and T6. 
Theorem 9. 
(T9)  |⎯  iFipiFip ∃⊃∀

Proof: use A10, AMT6, АМТ7 and the definition of . ∀∃,
Theorem 10. 
(T10) |⎯ iFmFipiFipFm ∃≡∃  
Proof: iFmFipiFipFm ∃⊃∃  is the axiom АМТ3. Sufficiency may be 

proved using the definition of , T9, A4, AMT3, A3. ∨
Similar proofs may be constructed for the following theorems, making the basis for 
grouping temporal modalities with quantifiers: 
Theorems 11-13. 

(T11) |⎯ iPmPipiPipPm ∃≡∃  

(T12) |⎯ iFmPipiPipFm ∃≡∃  

(T13) |⎯ iPmFipiFipPm ∃≡∃  

Theorems 14-17. 

(T14) |⎯ iFmFipiFipFm ∀≡∀  

(T15) |⎯ iFmPipiPipFm ∀≡∀  

(T16) |⎯ iPmFipiFipPm ∀≡∀  

(T17) |⎯ iPmPipiPipPm ∀≡∀  



Theorems 18-21. 

(T18) |⎯  jFjpiFijFiFjpi ∀∃≡∀∃

(T19) |⎯  jPjpiFijFiPjpi ∀∃≡∀∃

(T20) |⎯  jFjpiPijPiFjpi ∀∃≡∀∃

(T21) |⎯  jPjpiPijPiPjpi ∀∃≡∀∃

Theorems 22-25. 

(T22) |⎯ jFjpiFijFiFjpi ∃∀≡∃∀  

(T23) |⎯ jPjpiFijFiPjpi ∃∀≡∃∀  

(T24) |⎯ jFjpiPijPiFjpi ∃∀≡∃∀  

(T25) |⎯ jPjpiPijPiPjpi ∃∀≡∃∀  

Definition 3. 
Formula ϕ  is called atomic, if ϕ  is either a propositional variable or its 

negation, or a formula of the view or its negation.  ),...,(Pr 1 m
m nn

Definition 4. 
Formula ϕ  is in negation normal form (n.n.f.), if for every subformula 

ψ¬  formula ψ  is atomic, and the whole formula ϕ  is constructed without binary 
propositional connectives . ≡⊃,

Theorem 26. 
Let ϕ  be a formula from PTC(MT). 
Then |⎯ ψϕ ≡ , where ψ  - is a formula in negation normal form (n.n.f.). 
Theorem 26 may be proven by induction with help of axioms AMT1-

AMT9 and theorems T1-T6.  
Definition 5. 
Formula ϕ  is in FnPn-normal form (FnPn-n.f.), if it can be presented as: 

)...
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where : 
-  - is a number of disjuncts in a formula, N
-  - is an internal index for referencing disjuncts within the formula, k

-  - is a number of conjuncts of a particular conjunct form within k-th 
disjunct 

0≥j
kN



- kDj ⋅= 22,...,1  - is an index of a particular conjunct form within k-th disjunct, 

- },{ PF∈α  - is a symbol, partially denoting one of temporal modalities, 
- },{ ∀∃∈β  - is a symbol denoting one of quantifiers, 

- j
k

j Nr ,...,0=  - is an internal index for referencing formulae of a particular 
conjunct form within k-th disjunct,  

- j
kDd ,...,1=  - is an internal index for referencing elements of the form 

jjjj krkrkrkr
ii αβ   within a formula in the jr -th conjunct of the particular conjunct form 

within k-th disjunct, 

-  - is the number of quantifiers in the particular conjunct form within k-th 
disjunct, 

k
j

k DD ≤

-  - is the maximal number of quantifiers among all particular conjunct forms 
within k-th disjunct, 

kD

- jkr
ϕ - are atomic formulae. 

FnPn-n.f. of a PTC(MT) formula is a list of alternative histories of states of 
some object from a domain.  

For example, the following formula is in FnPn-n.f.: 
321 211 ϕϕϕϕ jFjiFiFFF ∀∃∧∨=  

Theorem 27. 
Let ϕ  be a formula of PTC(MT) in n.n.f. Then |⎯ ψϕ ≡ , where ψ  is a 

formula in FnPn-normal form. 
Proof: 
By theorem 26 every formula ϕ  possesses its negation normal form. In 

what follows it will be considered that ϕ  is already in n.n.f. 
(By induction) 
Step 1. If ϕ  is an atomic formula, then it is already in FnPn-n.f.: 
|⎯ ϕψ 0F≡ . 
If 21 pp ∧≡ϕ , where p1, p2 are atomic, then |⎯ )(0 21 ppF ∧≡ψ  is in 

FnPn-n.f. If 21 pp ∨≡ϕ , then |⎯ 21 00 pFpF ∨≡ψ  is in FnPn-n.f. Finally, formula of 
the view Fnp≡ϕ  or Pnp≡ϕ  is also in FnPn-n.f. 

Step k. Let ϕ  be a formula of PTC(MT) in FnPn-n.f.  
Step (k+1).  
Case 1. Let ϕψ ¬≡ . 

Using de Morgan laws, definition of ∀∃,  and the axioms AMT6, AMT7, AMT6.1, 
AMT7.1 one can obtain ψ  in FnPn-normal form. 



Case 2. Let 21 ϕϕψ ∨= . 
Can be proved basing on the properties of connectors ∨∧, . 

Case 3. Let 21 ϕϕψ ∧=  
Can also be proved basing on the properties of connectors ∨∧, . 

Case 4. Let ϕψ Fn≡ . 
Using axiom AMT8, theorems T1, T3, T5, T9 – T13 and rules R5, R6, prove that ψ  in 
FnPn-n.f. 

Case 5. Let ϕψ Pn≡ . 
Using axiom AMT8.1, theorems T2, T4, T6, T9 – T13 and rules R5, R6, prove that ψ  
in FnPn-n.f. 

Case 6. Let ϕψ j∃≡  
Using theorems T9 – T25 and rules R5, R6 prove that ψ  in FnPn-n.f. 

Case 7. Let ϕψ j∀≡  
Using theorems T9 – T25 prove that ψ  in FnPn-n.f. 

Proof is completed. 
 
3.3 Completeness and soundness of PTC(MT). 
Let’s prove logical correctness of PTC(MT).  
Main properties of every formal theory are soundness and completeness 

with respect to the model. In modal logics models of formulae are constructed with the 
help of a set of rules, according to Beth’s semantic tableaux technique. 

Construct a model of an arbitrary PTC(MT) formula.  
Definition 6. 
Let ϕ  be a formula in FnPn-n.f., and ψ  be a subformula of ϕ . A sequence 

of formulae lists >< −− sm ζζζζζ ,...,,...,, 110 , linearly ordered with a binary relation R 
(reflexive and transitive), forms a chain ϕΖ  for the formula ϕ , if this sequence is 
constructed following the set of rules, presented in the Table 1. 
Table 1. Rules for construction of a semantic tableau for checking PTC(MT) formula 
satisfiability. 

Condition: ϕψ =  (0-rule) 
Action: ψζ =0  

Condition: 1. 21 ψψψ ∧=  
2. ∅=∩ζψψ },{ 21  

( -rule) ∧
 

Action: },{ 21 ψψζζ ∪=  



Condition: 1. 21 ψψψ ∨=  
2. ∅=∩ζψψ },{ 21  

( -rule) ∨
 

Action: Either }{ 1ψζζ ∪=  
or }{ 2ψζζ ∪=  

Condition: 1. 1νψψ F=  
2. kζψ ∈  
3. 1≥ν  

( νF -rule) 
 

Action: 1. If there is no ϕζζ Ζ∈++ 11 : kk , then such list is 
created and new formula 1)1( ψνψ −= F ' is added 
to the 11, ++ ∈ kk ζψζ '    
2. If exists ϕζζ Ζ∈++ 11 : kk , then 1)1( ψνψ −= F ' 
is added to the 11 '   , ++ ∈ kk ζψζ  
3. Between kζ  and 1+kζ  relation ),( 1+kkR ζζ is 
set. 

Condition: 1. 1νψψ P=  
2. kζψ ∈  
3. 1≥ν  

( νP -rule) 
 

Action: 1. If there is no ϕζζ Ζ∈−− 11 : kk , then such list is 
created and new formula 1)1( ψνψ −= P ' is added 
to the 11, −− ∈ kk ζψζ '    
2. If exists ϕζζ Ζ∈−− 11 : kk , then 1)1( ψνψ −= P ' is 
added to the 11, −− ∈ kk ζψζ '    
3. Between kζ  and 1−kζ  relation ),( 1−kkR ζζ is 
set. 

Condition 1. 1ψψ iFi∃=  
2. kk ζψζψ ∉∈ 1,  

iFi∃ -rule 

Action Either kζψ ∈1  
or new formula 11 ψψ iFiF ∃=   '  belongs to 

kk ζψζ ∈'   ,  

iPi∃ -rule Condition 1. 1ψψ iPi∃=  
2. kk ζψζψ ∉∈ 1,  



Action Either kζψ ∈1  
or new formula 11 ψψ iPiP ∃=   '  belongs to 

kk ζψζ ∈'   ,  

Condition 1. 1ψψ iFi∀=  
2. kk ζψζψ ∉∈ 1,  

iFi∀ -rule 

Action 1. kζψ ∈1  
2. For each kjZjj >∈ ,: ϕζζ , such that the 
relation ),( jkR ζζ  is set,  jζψ ∈  

Condition 1. 1ψψ iPi∀=  
2. kk ζψζψ ∉∈ 1,  

iPi∀ -rule 

Action 1. kζψ ∈1  
2. For each kjZjj <∈ ,: ϕζζ , such that the 
relation ),( jkR ζζ  is set,  jζψ ∈  

Condition 1. )),(,(Pr 21
2 ννθψ ii∃=  

2. kζψ ∈  
)),(,(Pr 21

2 ννθii∃ -
rule  
(for predicate letter 
“=”) Action If there is no ϕζ Zi ∈ , such that ),( 21 ννθ=i , then 

such list is created. 
Condition 1. )),(,(Pr 21

2 ννθψ ii∀=  
2. kζψ ∈  

)),(,(Pr 21
2 ννθii∀ -

rule  
(for predicate letter 
“=”) Action If there is no ϕζ Zi ∈ , such that ),( 21 ννθ=i , then 

such list is created. 
Table 1 does not contain rules for resolving formulae like 1ψψ Fi= , where 

i is a numerical variable, or like 1ψψ i∀= . Such formulae can be presented in the form 
1ψjFj∀  with application of the deduction rules R5, R6.  

It also should be pointed out that the iFi∀ - and -rules reflect the 
transitivity and reflexivity of the relation R between possible worlds at different time 
points. According to the definition of a model for a modal system (see [12]) the model 
of the propositional metric temporal calculus PTC(MT), constructed according to the 
rules from Table 1, is S4-model. 

iPi∀

Definition 7. 
A set  of chains constructed according to the rules enlisted in  },...,{ 1 kZZ ϕϕ



the Table 1, truction . 

tion 8. 

is called a cons  ϕC

Defini
Chain ϕΖ  is closed, if coit ntains a formulae list ζ  such that for some 

propositiona thl variable p bo  p  and p¬  are in ζ . Construction  is closed if all 
chains in it are closed. 

ϕC

Definition 9. 
Let ϕ  be a formula of PTC(MT). A model for ϕ  will be any chain ϕΖ , 

which is not closed.  
Definition 10. 
Formula ϕ  is satisfiable if and only if ϕ  has a model defined over the 

construction ϕC . 

Definition 11. 
Formula ϕ  is logically valid (denoted as |= ) if and only if ϕ¬  does not 

have a mode e construction  (in other words, l defined over th  ϕ¬C ϕ¬  is unsatisfiable).  

rMetatheo em 1.  
If ϕ  is derivable (|⎯ϕ  ), then it is logically valid ( |=ϕ ).

s e logically valid. 
To prove this one may construct n.n.f. for the negation of each axiom, and applying 
rules from T

 validity property, every theorem of 
PTC(MT) is

 of contraries) 
s of an axiomatized formal theory is the denial of |⎯

 
Proof: 
Axioms A1-A11 and AMT1-AMT9 (with their mirror ) ar

able 1 obtain a closed construction.  
Every theorem of PTC(MT) can be derived from the set of axioms A1-A11 

and AMT1-AMT9 (with their mirrors) with the help of the deduction rules R1-R6. As 
far as the deduction rules preserve the logical

 logically valid. Proof is completed. 
Metatheorem 2.  
PTC(MT) is sound. 
Proof: (by the rule
Recall that soundnes ϕ  

and |⎯ ϕ¬  from the same set of axioms and deduction rules.  
Let |⎯ ϕ¬ , and ϕ  is a theorem of PTC(MT). According to th  

Metatheorem 1, 
e

ϕ¬  is logically valid. Logical validity of ϕ¬  requires that ϕ¬¬  (or 
simply ϕ ) does not ha  model. However, ve a ϕ¬¬  as the theorem should have a model. 
Come to the contradiction. Hence, PTC(MT) is sound. End of proof. 

PTC(MT) completeness proof requires that |⎯ϕ  iff |=ϕ . This can be 
achieved by proving of additional statements. 



Definition 12. 
Let nCϕ  be a construction  on its n-th step of creation,  be a 

chain of form
 ϕC n

n Cϕϕ ∈Ζ ,
ulae lists. Rank  r of n,ϕΖ  is defined as follows: 

=),( nr ζ 0, if there is n nZ ,ϕ∈  such that ,(Ro i ζ )ζ iζ , 
=nr 1),( +nr i),( ζζ , otherwise. 

Intuitively, rank of a chain indicates if formulae lists in the chain are 
connected. 

Definition 13. 
Let  be all formulae of the formulae list sψψψ ,...,, 21 jζ  in the chain n,ϕΖ  

of the construction  FornCϕ . mula  sj nAF ψψψζ ∧∧∧= ...),( 21  called associ  
form of the formulae list j

 is ated
ζ . 

Definition 14. 
formCharacteristic  ),( nCF jζ  of a formulae list jζ  in the chain n,ϕΖ  

of the construction nCϕ  is defined by induction over rank ),( nr jζ : 
If =(r j ),nζ 0, then ),(),( nAFnCF jj ζζ = . 
If 0),( >nr jζ  and there is ni Z ,ϕζ ∈  such that ),( ijR ζζ  and ),( nCF iζ  is 

defined, then
ijj

  
CF ),()(),(),( nCFjiFnAFn ζζζ −∧= , if ),( ijR ζζ  is directed to the 

future ( ji > ), and  
nCFijPnAFn ij(CF j ),()(),(), ζζ −∧= , if ζ ),( ijR ζζ  is directed to the 

past ( ji < ). 

form  of a chain 
Definition 15. 
Characteristic  ),( nZCF ϕ n,ϕΖ  of the construction 

corresponds

nCϕ  
 to the characteristic form of the formulae list 0ζ , ),(),( 0 nCFnZFC ζϕ =

Definition 16. 

. 

form of a construct  (denoted as Characteristic nCϕ ),( nCF ϕ ) for the 
formula ϕ  i

F k
ϕϕϕ ∨∨= . 

Lemma. 
nC

s  

C ),(...),(),( 1 nZCFnZCFn

|⎯ ( ),()1, FCF ϕϕ ⊃  
f: 

e enough to show that |⎯
Proo
It will b  )1,(),( +⊃ mCFmCF ϕϕ  for nm <≤1 . 

d to the rules from the T  1 only  
following si

According to the definition 14 an able the
tuations may occur: 



|⎯ ∨∨ ...),( 1 mZCF ϕ ⊃∨∨ ),(...),( mZCFmZCF ki
ϕϕ  

if at the (m+1) step of  construction was applied one of 

)1,(...)1,(...)1,( 1 +∨∨+∨∨+⊃ mZCFmZCFmZCF ki
ϕϕϕ  

nCϕ ∧ -rule, νF -rule, νP -rule, 

|⎯ mZCFmZCF ki
ϕϕ  

if at the (m+1) step of  construction was applied one of -rule, -rule or 

iFi∀ -rule, iPi∀ -rule, and  
),( 1 mZCF ϕ ⊃∨∨∨∨ ),(...),(...

)1,()...1,()1,(...)1,( 211 +∨+∨+∨∨+⊃ mZCFmZCFmZCFmZCF kii
ϕϕϕϕ  

nCϕ ∨ iFi∃ iPi∃ -
rule. 

As far as |⎯ ))()(()( rqrpqp ∨⊃∨⊃⊃ is the theorem of classical 
propositiona oof of the Lemma will depen

|⎯  for one of 

l calculus, the pr d on proofs of the following 
theorems: 

)1,(),( +⊃ mZCFmZCF ii
ϕϕ ∧ -rule, νF -rule, νP -rule, 

- rule, -rule, and 
|⎯ 21 +∨+ mZCFmZCFC ii

ϕϕ  for -rule, 
iFi∀ iP

),( ⊃mZF i
ϕ

i∀
)1,()1,( ∨ iFi∃ -rule or 

-rule. 
According to the definition 13, this means that  

iPi∃

|⎯ )1,(),( 00 +⊃ mCFmCF ii ζζ  for one of ∧ -rule, νF -rule, νP -rule, 
- rule, -rule, and 

|⎯ 2
0

1
0 +∨+ mCFmCFC ii ζζ  for -rule, 

iFi∀ iP∀
),( 0 ⊃mF iζ

i
)1,()1,( ∨ iFi∃ -rule or 

-rule. 
Finally, let  be a formulae list, which was subjected to the 

application o e Table

iPi∃
i

j Zϕζ ∈
f rules from th  1. Prove that  
|⎯ )1,(),( +⊃ mCFmCF jj ζζ  for one of ∧ -rule, νF -rule, νP -rule, 

- rule, -rule, and 
|⎯ 21

iFi∀ iP∀
),(

i
⊃mF j )1,()1,( +∨+ mCFmCFC jj ζζ  for -rule, ζ ∨ iFi∃ -rule or 

-rule. 
Case 1. Let 

iPi∃
jζψ ∈  be a formula, which was subjected to the application of 

rule at th , i.e. ∧ - e (m+1) step 21 ψψψ ∧= . Associated form of jζ  at the step m is 
ψγζ ∧≡ jj mF ),( , where jA γ  is a conjunction of all formulae o jf ζ  for the step m 

except for ψ .  
If rank 0),( =mr jζ , then )(),(),( 21 ψψγζζ ∧∧== jjj mAFmCF  and 

following th e obtaine ∧ -rule w ,( 2121 )()1ζ ψψψψγ ∧∧∧∧=+ jC . j mF
If rank 0),( >mr jζ , then either 

),( 21 mCFjkFkFmmCF kjj ),()()(),()( mCFjAF kj (), ζζ ζψψγζ  −∧ ∧∧=−∧=  



or 
kjkjj ),()()(),()(),(),( 21 mCFkjPmCFkjPmAFmCF ζψψγζζζ   −∧∧∧=−∧= .  

At the same time for the (m+1) step either 
,( + )1,()()()1 2121 −∧∧∧∧∧= CjkFj+ mFmCF kj ζψψψψγζ   or 

)1,()()()1,( 2121 +−∧∧∧∧∧=+ mCFkjPmCF kjj ζψψψψγζ  .  
As far as at the step (m+1) we don’t apply any rule for the formulae set 

kζ , then the characteristic form of kζ  at (m+1) step is not changed, i.e. 
)1,(),( += mCFm kkCF ζζ .  
⎯Additionally, |  rqrqprqp ∧∧∧∧≡∧∧ )()(  - is the theorem from 

classic propositional calculus. 
Thus, |⎯ ,( )1,() +⊃ mCF jmCF j ζζ . 

onsider only the case whenCase 2. C  νF -rule is applied (the situation with 
νP -rule will be the same). Let jζψ ∈  be a formula, which was subjected to the 

lication of app νF -rule at the (m p, i.e. 1+1) ste νψψ F= . Associated form of jζ  at the 
step m is 1)( , νψγζ FmAF j ∧≡ , where jj γ  is a conjunction of all formulae o jf ζ  for 
the step m except for ψ .  

If rank ( 0), =mr j , then ζ 1),(),( νψγζζ FmAFmCF jjj ∧==  and 
following νF -rule we 1,( mj obtain 1 mCFFCF j ),()()ζ ζνψγ =∧=+ , as far as this 
rule does not affect jζ , but it affects 1+jζ : ))1 1(()1,( 11 ψνγζ ∧=+ ++ FmCF jj − . 1+jγ  
is a conjunction of all formulae of j 1+ζ  for the step m.  

If rank 0),( >mr jζ , then either 
),()(),()( mCFjAF kj (),),( 1 mCFjkFFkFmmCF kjj ζνψγζζζ  − ∧∧=−∧=  or 
),()(),()(),(),( 1 mCFkjPFmCFkjPmAFmCF kjkjj ζνψγζζζ   −∧∧=−∧= .  

At the same time for the (m+1) step either 
)1,()()1 1,( +−∧∧= mCFjkFF kj+mCF j ζνψγζ   or

)
 

1,()()1,( 1 +−∧∧=+ mCFkjPFmCF kjj ζνψγζ  ,  
and only for 1+= ji  )1,( 1 ++ mCF jζ  will be changed, 

1 ,()1(,( 11 )1())1 11 ψνζψνγζ −∧=− ++ mAFmCF jj
for all other values of i, 

∧=+ + FFj , 
)1,( +mCF iζ  remain unchanged. 

Thus, basing on T1, T2, deduce that |⎯ )1,( +),( ⊃ mCF jmCF j ζζ  
Case 3. Let jζψ ∈  be a formula, which was subjected to the application of 

rule at th∨ - e (m+1) step 21, i.e. ψψψ ∨= . Associated form of jζ  at the step m is 
)(),( 21 ψψγζ ∨∧≡ jj mF , whA ere jγ  is a conjunction of all formulae of jζ  for the 

step m except for ψ .  
jIf rank r 0),( =m )(),(),( 21 ψψγζζ ∨∧== jjj mAFmCF  and ζ , then 



following  and 

mCF jjj ζζζ  by the axiom A5.
  >m

the ∨ -rule we obtain 

221
2 )()1,( ψψψγζ ∧∨=+ jj mCF .  

CF

121
1 )()1,( ψψψγζ ∧∨∧=+ jj mCF

∧

Deduce |⎯ )1,()1,(),( 21 +∨+⊃ mCFm
If rank (r j 0),ζ , then either 

(, 21 mCFjkFkFm kj ),()()(),())(),( mCFjAFmCF kjj ζψψγζζζ  −∧∨ ∧=−∧=

CF

 
or 

kjkjj ),()()(),()(),(),( 21 mCFkjPmCFkjPmAFm ζψψγζζζ   −∧∨∧=−∧= .  
At the same time for the (m+1) step 

,( 1 ++ mFmCF kj ζζ  and 

ere 

)1,()()()1 121 −∧∧∨∧= CjkFj ψψψγ  

) , wh1,()()()1,( 221
2 +−∧∧∨∧=+ mCFjkFmCF kjj ζψψψγζ  

)1,(),( += mCFmCF kk ζζ .  
Deduce |⎯ ( 21 +∨+⊃ mCFmCFCF jj ζζζ  by the axiom A5. ,mj )1,()1,()
Case 4. Let jζψ ∈  be a formula, which was subjected to the application of 

rule atiFi∀ -  the (m+1) step, i.e. 1ψψ iFi∀= . Associated form of jζ  at the step m is 

1),( ψγζ iFim jjAF ∀∧≡ , where jγ  is a conjunction of all formulae of jζ  for the step 
m except for ψ .  

f nk I ra 0),( =mr jζ , then 1),(),( ψγζζ iFimAFmCF jjj ∀∧==  and 
following th e obtain 11),()1e iFi∀ -rul 1,( ψζ ψγψζ ∧∀∧=∧=+ iFimAFCF jj

2, T9 and rules R3 – R6 deduce that  
mj .  

Basing on the T1,T
|⎯ 111 ψψγψγ ∧∀∧⊃∀∧ iFiiFi jj  
If rank 0),( >mr jζ , then either 

(),),( 1 mCFjkFiFikFmmCF kjj ),()(),()( mCFjAF kj ζζ ζψγζ  −∧ ∀∧=−∧=  or 
),()(),()(),(),( 1 mCFkjPiFimCFkjPmAFmCF kjkjj ζψγζζζ   −∧∀∧=−∧= .  

For the (m+1) step either 
)1,(),( 11 ()1 ψγ ψζζ ∧+−∧∀∧= kFiFij

1

+ mCFjmCF kj   or 

1 )1,()()1,( ψζψγζ ∧+−∧∀∧=+ mCFkjPiFimCF kjj  . 
At the same time  

)1,( 1)1,( ψζζ iFimF kAmCF k =+ ∀∧+ . 
Check the implication |⎯ )1,(),( +⊃ mCFmCF jj ζζ : 

|⎯ 111)(1 ))((γγψ ψγψψγ iFijkFiFiiF kj ∀jkFi jk ∧∀∧⊃−∧  −∧∧∀∧   
Deduce that |⎯ )1,(),( +⊃ mCFmCF jj ζζ  from T1, T2, T9, T14 – T17 

and rules R3
cases 

 – R6. 
Other ( 111 ,, ψψψψψψ iPiiFiiPi ∃=∃=∀=   ) can be proved 

analogously. 



Metatheorem 3. 

If |= ϕ¬ , then |⎯ ϕ¬  
Proof: 
Let ϕ  be in FnPn-n.f. 

ϕ¬  means that the c|= onstruction  is closed, hence (from the definition 
of closeness of 

ϕC

ϕ ) each chain in it is also closed. Closeness of a chain ϕϕ CZC ∈  means 
that there is a formulae list iζ  such that for some variable p both p  and p¬  are in iζ . 
From the propositional axiom set of PTC(MT) conclude that |⎯ ,( nA i )F ζ¬  

|⎯ ),( nZCF ϕ¬  is concluded from the theorems T e, 
. 

1-T4, henc following 
the definition of a characteristic form of a construction ϕC  |⎯ ),( nCF ϕ¬ . 

From the Lemma, |⎯ )1,(ϕCF¬ . Taking in  accoto unt that ϕϕ =)1,(CF  (0-
rule), deduce |⎯ ϕ¬ . End of proof

Metatheorem 4. 

. 

|⎯ϕ  iff  |=ϕ  
Proof: 
This metatheorem is concluded from metatheorems 1 and 3. End of proof. 

earch of the temporal metric logic with 
respect to th

1. Gavrilova T skiy V.F. Knowledge bases of intelligent systems. SPb.: Piter, – 2000. – 

Metatheorem 4 shows completeness of PTC(MT). 
 

. Conclusions and Future Work 4
The paper presents a step in the res
e logical properties of a formal theory – completeness and soundness. It is 

shown that propositional metric temporal calculus is complete and consistent.  
Tableau construction rules presented in the paper give a basis for creation a 

reasoner for first-order metric temporal calculus, which is more convenient for 
knowledge representation.  

The work will be continued in the following directions. First, decidability 
of PTC(MT) should be checked, as far as PTC(MT) lacks finite model property. Second, 
all results obtained for the propositional metric temporal system PTC(MT) will be 
considered for the Description Logics family, which are de facto standard for 
presentation of ontologies in the Semantic Web.  
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