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Abstract

For a propositional metric temporal calculus PTC(MT) based on the known language of a
propositional metric temporal logic introduced by Arthur Prior defined are negation normal form
(n.n.f.) and FnPn-normal form (FnPn-n.f.) of a PTC(MT) formula. Proved is existence of n.n.f. and
FnPn-n.f. for arbitrary PTC(MT) formulae. Beth-Kripke semantic tableaux method is used to prove
completeness and soundness of PTC(MT).

1. Introduction

Knowledge engineering is one of the fields of artificial intelligence,
focusing in knowledge mining and formalization [1, pp.59-61]. One of the approaches
to present a domain of interest - ontological engineering — considers conceptual
structures (also called intensional conceptualizations) of the domain and presents them
in ontology. According to Guarino [2] “ontology is a logical theory accounting for the
intended meaning of a formal vocabulary”. Ontologies as formal theories are often
expressed in some logical language, varying from language of first-order predicate logic
(e.g. Knowledge Interchange Format — KIF) to the family of Description Logics
(dealing with unary and binary predicates only).

Most of the languages used for ontology description are static, i.e. they
consider an intensional conceptualization of an arbitrary domain in a static manner.
However the real world is dynamic and evolution may influence conceptualization of
the domain as well.

One of the ways to incorporate the dynamic nature of the domain into an
information system focuses on the usage of an aletic modal logic for declaration of
“allowed” states of affairs within this domain [3]. According to the approach of [3] an
extensional conceptualization (which in terms of [2] consists of domain concepts
instances/relationships) i1s allowed to change only as prescribed by the “dynamics”
axioms of a formal theory based on the aletic modal logic language.

However in [3, p.154] it 1s outlined that of great importance is the dynamic
nature of the intensional conceptualization itself.

Incorporating such evolving intensional conceptualizations into
information systems one may require to analyze changes occurring in that
conceptualization at a certain point of time, to trace a history of a concept/relationship
within the sequence of conceptualizations of the same domain, to discover logical
equivalence/subsumption of ontologies describing intensional conceptualizations of the
same domain at different time points.

Extension of a logical language for the ontology description with an
explicit notion of time is the way to provide the aforementioned analysis in the
declarative way.

Temporal logic is a kind of symbolic modal logic [4] dealing with domain



description statements, which are interpreted over the time flow, either point-based or
interval-based.

The reviews of known logical systems involving temporal modalities can
be found in [5], [6], [7]. Among these systems are Lemmon’s minimal system K; (with
the unary operators F — “somewhere in the future”, G — “always in the future” and their
mirrors), von Wright system “And then” (the binary operator T,, and basic construct
pTw g — “p and then ), Scott’s system “And next instant” (the unary operator Ts, basic
construct Tsp — “in the next time point will be p”).

Of special interest is the metric temporal logic [4] with modalities Fn (“it
will be the case after n time points™) and Pn (“it was the case n time points ago”), which
allow to explicitly state at what time point an event occurs.

2. Problem formulation

Let’s consider an example of a correct formula of the metric temporal
logic. Formula Fn(p>q), where p is a propositional variable for the sentence “to be
child”, and q is a propositional variable for the sentence ’to be human” means that in n
time points (after the current time point) it will be true that being a child implies being a
human.

Reasoning tasks over such formulae includes satisfiability checking of
arbitrary formula of the metric logic, or, in other terms, whether this formula has a
model. Back to example, one may check satisfiability of the formula Fng or Fn(p A Q).

The aim of the presented research is to construct the correspondent
calculus, its interpretation and the inference mechanism to check existence of the model
for arbitrary formulae.

The paper presents propositional metric temporal calculus PTC(MT) based
on the known language of propositional metric temporal logic LMP [4]. Main
properties of this calculus are analyzed, namely completeness (whether all logically
valid formulae of a formal theory are theorems of that theory) and soundness (which
means that the formal theory does not allow to prove both a theorem and its
contradiction).

For these purposes we need to adopt a technique called tableaux (namely,
Beth’s semantic tableaux method [8]), which is usual for proving completeness and
soundness of a modal logic [8]. The survey of tableau systems for modal and temporal
logics may be found in [9]. Adaptation of the method for von Wright system “And then”
(including its quantified extension) was done by Solodukhin in [10].

Tableau rules usually operate on a formula containing negation only for
atomic subformulae. Thus we need to define negation normal form (n.n.f.) for
PTC(MT).

Introduction of the temporal modalities Fn and Pn will influence the initial
set of tableau rules to deal with formulae containing these modalities. We will introduce
FnPn-normal form (FNPn-n.f.) of a PTC(MT) formula and prove the existence of n.n.f.
and FnPn-n.f. for arbitrary PTC(MT) formulae. The set of time points will be
considered as the set of integers.



3. Results

Propositional metric temporal calculus considers time having linear
discrete structure, infinite into the past and to the future, assumes that time points are
organized with reflexive and transitive ordering relation.

Such structure of time is isomorphic to the structure(Z,<), where Z - is a
set of integers, and < - is a strict ordering relation.

3.1 Alphabet, formulae, axioms, deduction rules

The alphabet of PTC(MT) consists of:
(a) Propositional variables p,q,r,s,... ;
(b) Primitive propositional connectives —,D, and additional connectives A,v,=,
defined over primitive ones in the usual way;

(c) Temporal operators Fn, Pn (Fn — « it will be the case after n time points», Pn — «it
was the case n time points ago»);

PTC(MT) terms are:
(a) v,vy,Vv,,... are natural numbers and «0»;

(b) 1,if,..., I, Jq..- are numerical variables;
(c¢) if nq,...,ny,, are natural numbers and «0» or numerical variables, and 6— m-ary
operator, then 8(n;,...,Ny,) —1s a term.

Formulae are constructed following the rules:

(a) Every propositional variable is a formula;
(b) If @ and y are formulae, then —@, ¢ Dv, o AW, @ Vv, =y are also formulae;

(c) If Pr™ is a predicate letter denoting m-ary predicate, defined over integers (e.g.,
«=», «>»,...), and ny,...,N, — are terms, then Prm(nl,...,nm) - 1s a formula;

(d) If @ —is a formula, then Fne,Pne, Jip,Viep — are also formulae.
Alphabet of PTC(MT) is defined.

Definition 1.
Numerical variable i occurs free in a formula ¢, if it is not within the
scope of any quantifier in ¢.

Definition 2.

Term n is free in a formula ¢ for a numerical variable |, if there are no
free occurrences of j in ¢, such that j is within the scope of any quantifier Vi, where
I, 1s @ numerical variable in the term n.

PTC(MT) axioms set will consist of all axioms of the propositional
calculus and some axioms of temporal logic, taken from [4],[6],[7].

Following formulae are axioms (propositional axioms are correspondent to
L4 system, see [11, p.49]):



(Al) po(@>p);

(A2) (po(@>n)o((P2a)>(po)):;

(A3) pAgDp

(A4) pAQDQ

(AS) p>(pv Q)

(A6) 4> (pv Q)

(A7) P> (A>(PAQ))

(A8) (P> ) >((r>4)>(pvr)>0q)

(A9) (P2 @) > (P> =) >—P)

(A10) ——pop

(AMT1) (=Fn—(p o)) o (Fnp o FnQg)- logical homogeneity in the future
(AMT1.1) (=Pn—=(p > q)) o (Pnp o Pnq) - logical homogeneity in the past
(AMT2) Fn—Pn—p> p

(AMT2.1) Pn—Fn—p> p

(AMT3) Fm3iFip o JiFmFip

(AMT3.1) Pm3iPip o JiPmPip

(AMT4) Fm3iPip o JiFmPip

(AMT4.1) Pm3iFip o 3iPmFip

(AMTS) F(m+n)p o FmFnp

(AMTS5.1) P(m+n)p > PmPnp

(AMT6) —Fnp o Fn—p — infinity into the future

(AMT6.1) —Pnp o Pn—p — infinity into the past

(AMT7) Fn—p > —Fnp —nonbranching in the future

(AMT7.1) Pn—p o —=Pnp — nonbranching in the past

(AMTS8) FmFnp > F(m+ n)p — transitivity in the future

(AMTS.1) PmPnp o> P(m+n)p — transitivity in the past

(AMT9) (m=n+k) > (FmPnp o Fkp) — iteration of temporal modalities

Propositional axioms are independent with respect to PTC(MT), the same
applies for temporal axioms.

Deduction rules for calculus PTC(MT) are:

(RT) P22V _Modus Ponens



R2) G substitution rule (i is obtained after replacing in ¢ all

w(p/7)
occurrences of a propositional variable p with formula y)
(R3) F(D — the rule of deriving “always in the future”
— n—|(0
(R4) P(D — the rule of deriving “always in the past”
— n—|(0

Let @ be a PTC(MT) formula that does not contain numerical variable i, @[ j/i]

be a PTC(MT) formula with all free occurrences of a numerical variable j replaced with
I. Then the following deduction rule may be applied:

(RS) M — the generalization rule
Yigp
If ¢ is a PTC(MT) formula which contains numerical variable i, and ¢@[i/n] be a

PTC(MT) formula with all occurrences of a numerical variable i replaced with term n,
which is free for i in @, then the following deduction rule may be applied:
Vi
(R6) —7
p[1/n]
Calculus is constructed.

Throughout this paper we restrict the discussion with binary operations
“+7 “” for PTC(MT) terms construction and use the only binary predicate
“:’,(“equality”).

3.2 Investigation of the properties of PTC(MT).

There are several theorems provable in the PTC(MT), which will facilitate
further analysis of completeness and soundness of this calculus. All the theorems T1-
T25 are proved by the rule of contraries.

Theorem 1.
(T —Fn(pAqg)=Fnp A Fnq
Proof: necessity is proved with the help of AMT6, the consequence of the

deduction theorem (see [11, p.40, consequence 1.9 (i)], the deduction theorem.
Sufficiency is proved using the definition of v,A,D> , A4, AMTI1, AMT7.

Theorem 2.
(T2) —Pn(p A q)=Pnp A Pnq
Theorem 3.
(T3) —Fn(pvq)=Fnpv Fnq

Proof: necessity is proved with the help of the definition of v, A10,
AMT6, AMT7, AMTI. Sufficiency is proved, basing on the definition of v,



distributive law for A,v, A10, AMT6, AMT7, T1.

Theorem 4.

(T4) —Pn(pv q)=Pnpv Pnq

Theorem 5.

(T5) —(m=n+k) o (FmPnp = Fkp)

Proof: (m=n-+k)> (FmPnp > Fkp) is the axiom AMT9. Sufficiency (
F—(m=n+k) > (Fkp > FmPnp)) is proved with the help of the definition of v, A10,
AMT6, AMT7, AMTS5, AMT?2.

Theorem 6.

(T6) —(n =k +m) o (FmPnp = Pkp)

Proof: necessity can be proved using the definition of v, AMTS5.1, A10,

AMT6, AMT7, AMT7.1, AMT2.1. Sufficiency is proved using the definition of v,
AMT6, AMT7, AMTS.1, A10, AMT6, AMT7.

Theorem 7.

(T7) —(m=k +n) > (PmFnp = Pkp)

Theorem 8.

(T8) —(n=k + m) > (PmFnp = Fkp)

Proof of the theorems T7 and T8 is analogous to proof of TS5 and Té6.

Theorem 9.

(T9) —ViFip o 3iFip

Proof: use A10, AMT6, AMT7 and the definition of 3,V.

Theorem 10.

(T10) |—Fm3iFip =3iFmFip

Proof: Fm3iFip o JiFmFip is the axiom AMT3. Sufficiency may be
proved using the definition of v, T9, A4, AMT3, A3.

Similar proofs may be constructed for the following theorems, making the basis for
grouping temporal modalities with quantifiers:

Theorems 11-13. Theorems 14-17.

(T11) —Pm3iPip = 3iPmPip (T14) —FmViFip = ViFmFip
(T12) |—Fm3iPip = 3iFmPip (T15) —FmViPip = ViFmPip
(T13) |—Pm3iFip = 3iPmFip (T16) —PmViFip = ViPmFip

(T17) —PmViPip = ViPmPip



Theorems 18-21. Theorems 22-25.

(T18) —3iVvjFiFjp = 3iFiVjFjp (T22) —Vi3jFiFjp = ViFi3jFjp

(T19) —3iV]jFiPjp = 3iFiVjPjp (T23) —Vi3jFiPjp = ViFi3jPjp

(T20) —3iVjPiFjp = JiPiVjFjp (T24) —Vi3jPiFjp = ViPiJjFjp

(T21) —3iVjPiPjp = JiPiVjPjp (T25) —Vi3jPiPjp = ViPi3jPjp
Definition 3.

Formula ¢ is called atomic, if ¢ is either a propositional variable or its

negation, or a formula of the view Pr™(n,...,n,) or its negation.

Definition 4.

Formula ¢ is in negation normal form (n.n.f.), if for every subformula
— formula w is atomic, and the whole formula ¢ is constructed without binary
propositional connectives D, =.

Theorem 26.
Let ¢ be a formula from PTC(MT).

Then —@ =y, where w - is a formula in negation normal form (n.n.f.).

Theorem 26 may be proven by induction with help of axioms AMTI-
AMT9 and theorems T1-T6.

Definition 5.
Formula ¢ is in FnPn-normal form (FnPn-n.f.), if it can be presented as:

N Ni NZ

=v(AF A AP A
(D k=1(r1=0 Vkr1¢kr1 r2— Vkr2¢kr2

Ng N

k k 1
. s+l

3 DVID"‘VS) A r4/:0 V Ikl’4 Pr (Ikl’4 ,Vl,...l/s) A

AN A av L oal LB al -
a.p erﬁ krl1 krl1 ’Berd krld (Dkrj)
rJ=0,N.kJ
d=0,D/
where :
- N -is a number of disjuncts in a formula,

- K -1is an internal index for referencing disjuncts within the formula,
N/ >0

disjunct

- is a number of conjuncts of a particular conjunct form within k-th



. 2D . . : : o ..
- 1=1...,277% _is an index of a particular conjunct form within k-th disjunct,

_aeiF.Py 1s a symbol, partially denoting one of temporal modalities,
B €13,V} -is a symbol denoting one of quantifiers,

- r'=0,..,N! - is an internal index for referencing formulae of a particular
conjunct form within k-th disjunct,

- d=L..,D} - is an internal index for referencing elements of the form

B,.i ikr i Xy ikr i within a formula in the 1’ -t conjunct of the particular conjunct form
within k-th disjunct,
- D{ <Dy - is the number of quantifiers in the particular conjunct form within k-th
disjunct,
- Dy - is the maximal number of quantifiers among all particular conjunct forms
within k-th disjunct,
- P,i - are atomic formulae.
FnPn-n.f. of a PTC(MT) formula is a list of alternative histories of states of
some object from a domain.
For example, the following formula is in FnPn-n.f.:
@ =Flo, v Flp, A F23iFiVjFjp;
Theorem 27.
Let @ be a formula of PTC(MT) in n.n.f. Then —@ =y, where v is a
formula in FNnPn-normal form.
Proof:
By theorem 26 every formula ¢ possesses its negation normal form. In
what follows it will be considered that ¢ is already in n.n.f.
(By induction)
Step 1. If ¢ is an atomic formula, then it is already in FnPn-n.f.:
Fuw =FO0¢p.
If ¢=p; A p,y, where p;, p, are atomic, then —w =FO0(p; A p,) is in
FnPn-n.f. If ¢ = p; v p,, then |—y =F0p; v FOp, is in FnPn-n.f. Finally, formula of
the view @ = Fnp or ¢ = Pnp is also in FnPn-n.f.
Step k. Let @ be a formula of PTC(MT) in FnPn-n.f.
Step (k+1).
Case 1. Let w =—0.

Using de Morgan laws, definition of 3,V and the axioms AMT6, AMT7, AMT6.1,
AMT?7.1 one can obtain y in FNPn-normal form.



Case2. Let w =¢; v 5.

Can be proved basing on the properties of connectors A,V .
Case 3. Let w =¢; A

Can also be proved basing on the properties of connectors A,V .
Case 4. Let w =Fneg.

Using axiom AMTS, theorems T1, T3, TS5, T9 — T13 and rules R5, R6, prove that ¢ in
FnPn-n.f.

Case 5. Let w =Pno.
Using axiom AMTS.1, theorems T2, T4, T6, T9 — T13 and rules R5, R6, prove that
in FnPn-n.f.

Case 6. Let w =3j¢
Using theorems T9 — T25 and rules RS, R6 prove that  in FnPn-n.f.

Case 7. Let w =Vjop
Using theorems T9 — T25 prove that ¢ in FnPn-n.f.

Proof is completed.

3.3 Completeness and soundness of PTC(MT).
Let’s prove logical correctness of PTC(MT).

Main properties of every formal theory are soundness and completeness
with respect to the model. In modal logics models of formulae are constructed with the
help of a set of rules, according to Beth’s semantic tableaux technique.

Construct a model of an arbitrary PTC(MT) formula.

Definition 6.

Let ¢ be a formula in FnPn-n.f., and  be a subformula of ¢. A sequence
of formulae lists< ,47,-,¢m-6—1,---6 _g >, linearly ordered with a binary relation R
(reflexive and transitive), forms a chain Z, for the formula ¢, if this sequence is

constructed following the set of rules, presented in the Table 1.

Table 1. Rules for construction of a semantic tableau for checking PTC(MT) formula
satisfiability.

(0-rule) Condition: Y =¢

Action: Co=VW

(A-rule) Condition: 1. =y Ay,
2. yyatn =90

Action: ¢ =¢Ulywa)




(v -rule)

Condition:

Ly=y vy,
2.y i g =0

Action:

Either { =4 U {y}
org =¢ Uiyy}

(Fv-rule)

Condition:

L.y =Fvy,
2. weg“k
3.v>l

Action:

1. If there is no (. :Cyy4 €Z,,, then such list is
created and new formula v '=F(v — 1)y is added
tothe Oy, ¥ '€y

2. If exists Cyyq:0ke1 €2y, then y'=F(v -y,
is added to the ¢,,,, w'e <.,

3. Between ¢ and ¢, relation R({y,Syq) 1S
set.

(Pv-rule)

Condition:

l. w =Pvy,
2.y edy
3.vz=l

Action:

1. If there is no &y_;:{k_ €Z,, then such list is
created and new formula y '=P(v — 1)y 1s added
tothe Gy, ¥ 'e gy

2. If exists Gy :{k— €Z,, then y '=P(v - Dy, is
added to the &, ,, w'e

3. Between ¢ and &\ _; relation R({y,Sy_y) 1s
set.

JiFi -rule

Condition

1. w =3iFiy,
2. l//egkal//l ggk

Action

Either y € &}
or new formula w'=FI13iFiy; belongs to

Ck»> ¥V '€Ck

JiPi -rule

Condition

1. w =3iPiy,
2.y eCy.y £ Ck




Action Either y; € ¢
or new formula '=P13iPiy; belongs to
Ck> W ek
ViFi -rule Condition 1. y =ViFiy,
2.y eqy.y £k
Action l. wy el
2. For each ¢;:{;€Z,,j>k, such that the
relationR(y,& ') is set, y €
ViPi -rule Condition 1. y =ViPiy,
2.y eCy,¥ €4k
Action 1. wy el
2. For each (j:{je€Z,,j<k, such that the
relationR(Jy, &) is set, y €
3iPr2(i,0(v,v,))- |Condition 1, —JiPr2 (i, 6(vy,v,))
rule 2. wely
f dicate lett }
‘(‘Zo’f)pre 1A TR Action If there is nodjeZ,, such that 1=6(v,v,), then
such list is created.
ViPr2(i,0(v;,v,))- |Condition 1 v —viPr?(i,0(v,,v5))
rule 2.y el
(for predicate letter - - )
Action If there 1s nodjeZ,, such that i=6(v,,v,), then

“_7’)

gp 9
such list is created.

Table 1 does not contain rules for resolving formulae like = Fiy, where

| is a numerical variable, or like ¥ = Vi . Such formulae can be presented in the form

V]Fjy with application of the deduction rules R5, R6.

It also should be pointed out that the ViFi- and ViPi-rules reflect the
transitivity and reflexivity of the relation R between possible worlds at different time
points. According to the definition of a model for a modal system (see [12]) the model
of the propositional metric temporal calculus PTC(MT), constructed according to the
rules from Table 1, 1s S4-model.

Definition 7.

A set {Z1 yeees L ;} of chains constructed according to the rules enlisted in




the Table 1, is called a construction C¢.

Definition 8.

Chain Z, is closed, if it contains a formulae list & such that for some
propositional variable p both p and —p are in ¢. Construction C, is closed if all
chains in it are closed.

Definition 9.
Let ¢ be a formula of PTC(MT). A model for ¢ will be any chainZ,,

which is not closed.

Definition 10.

Formula ¢ is satisfiable if and only if ¢ has a model defined over the
construction C, .

Definition 11.

Formula ¢ is logically valid (denoted as |=) if and only if —¢ does not
have a model defined over the construction C_,, (in other words, —¢ is unsatisfiable).

Metatheorem 1.
If @ is derivable (—¢ ), then it is logically valid ( |=¢).
Proof:

Axioms A1-Al1l and AMT1-AMTO (with their mirrors) are logically valid.
To prove this one may construct n.n.f. for the negation of each axiom, and applying
rules from Table 1 obtain a closed construction.

Every theorem of PTC(MT) can be derived from the set of axioms A1-All
and AMTI1-AMT9 (with their mirrors) with the help of the deduction rules R1-R6. As
far as the deduction rules preserve the logical validity property, every theorem of
PTC(MT) is logically valid. Proof is completed.

Metatheorem 2.

PTC(MT) is sound.

Proof: (by the rule of contraries)

Recall that soundness of an axiomatized formal theory is the denial of —¢
and |— —¢ from the same set of axioms and deduction rules.

Let — —¢@, and ¢ is a theorem of PTC(MT). According to the
Metatheorem 1, —¢ 1is logically valid. Logical validity of —¢ requires that ——¢@ (or
simply ¢) does not have a model. However, — ¢ as the theorem should have a model.
Come to the contradiction. Hence, PTC(MT) is sound. End of proof.

PTC(MT) completeness proof requires that —¢ iff |=¢. This can be
achieved by proving of additional statements.



Definition 12.

Let Cg be a construction C,, on its n-th step of creation, Z,, , € Cg be a
chain of formulae lists. Rank rof Z, , is defined as follows:

r(g,n) =0, if there is no g € Z,, , such that R(J,j),

r(g,n)=r(dj,n)+1, otherwise.

Intuitively, rank of a chain indicates if formulae lists in the chain are
connected.

Definition 13.
Let y1,y5,....ys be all formulae of the formulae list £ in the chain Z,,

of the construction C;. Formula AF(Jj,n)=y; Ayy A Ay, is called associated
form of the formulae list ;.

Definition 14.
Characteristic form CF(£j,n) of a formulae list £ in the chain Z,

of the construction C 2 is defined by induction over rank r(¢’j,n):
If r(£j,n) =0, then CF(Jj,n)=AF(Z;,n).
If r(¢’j,n)>0 and there is j € Z,, , such that R(Jj,¢j) and CF(&j,n) is

defined, then
CF(j,n)=AF(gj,n A F@{ - ))CF(,n), if R(£j,4i) is directed to the

future (1> j), and

CF(gj,n)=AF(gj,n) AP(j—DCF(&,n), if R({j,45) is directed to the
past (i< ).

Definition 15.

Characteristic form CF(Z,,n) of a chain Z, , of the construction C;
corresponds to the characteristic form of the formulae list &, CF(Z,,,n) =CF(Jy,n).

Definition 16.
Characteristic form of a construct C(E (denoted as CF(¢,n)) for the

formula ¢ is
CF((o,n):CF(Z1 ,n)v...vCF(Zk,n).

Lemma.

— CF(¢,1) > CF(¢,n)

Proof:

It will be enough to show that |— CF(¢,m) > CF(@,m+1) for 1I<m<n.

According to the definition 14 and to the rules from the Table 1 only the
following situations may occur:



L CF(Z.,m)v..vCFZ! m)v..vCFE(2ZX,m>
SCFZL m+1)v..vCF@Z. m+1)v..vCFEZX,m+1)

if at the (m+1) step of C; construction was applied one of A-rule, Fv-rule, Pv-rule,
ViFi -rule, ViPi-rule, and
— CF(zL,m)v..vCF(Z! mv..vCFZX,m>

SCR@ZL m+1)v..vCF@ZY m+1)vCF(Z2,m+1)..vCFZX,m+1)

if at the (m+1) step of C(S construction was applied one of v -rule, JiFi-rule or JiPi-
rule.

As far as — (p2>g)>((pvr)>(qvr))is the theorem of classical

propositional calculus, the proof of the Lemma will depend on proofs of the following
theorems:

|—CF(Zi ,m) > CF(Zi ,m+1) for one of A-rule, Fv-rule, Pv-rule,
ViFi - rule, ViPi-rule, and

—CF(Z,,,m)>CF(Zyl,m+1)v CF(Z)?,m+1) for v-rule, JiFi-rule or
JiPi -rule.

According to the definition 13, this means that

—CF(£),m)>CF(¢h,m+1) for one of A-rule, Fv-rule, Py-rule,
ViFi - rule, ViPi -rule, and

—CF (&), m)>CF(,m+1)vCF (2, m+1) for v-rule, JiFi-rule or
JiPi -rule.

Finally, let J; eZ(i/, be a formulae list, which was subjected to the

application of rules from the Table 1. Prove that

|—CF(§j,m) DCF(Q’J- ,m+1) for one of A-rule, Fv-rule, Pv-rule,
ViFi - rule, ViPi -rule, and

—CF(¢j,m)>CF(¢j1.m+1)v CF({j5.m+1) for v-rule, JiFi-rule or

JiPi -rule.
Case 1. Let y € £; be a formula, which was subjected to the application of

A-rule at the (M+1) step, i.e. ¥ =y Ay,. Associated form of ¢ at the step m is
AF(Lj,m)=y; Ay, where y; is a conjunction of all formulae of £ for the step m
except for .

If rank r(gj,m)=0, then CF(Jj,m)=AF({j.m)=yjA(y;Ay,) and
following the A-rule we obtain CF(&j,m+ 1) =y Ay AW2) AW AW,

If rank r(g’j,m) >0, then either

CF(Zj.m=AF(j.mAFK=])CF(.m)=yj AW Ap2) AF(k=])CF(Cy,m)



or
CF({j,m)=AF({j,m) A P(j—K) CF({x,m) =y A (w1 Awa) AP()—K) CF(y,m).
At the same time for the (m+1) step either
CR(j.m+D=yj Ay Awa) Ay Ay AF(K=]) CF({k,m+1) or
CR(Zj.m+D=yj Ay Awa) A Apy AP(J=K)CE (G, m+1).
As far as at the step (m+1) we don’t apply any rule for the formulae set
¢, then the characteristic form of ¢ at (m+1) step is not changed, i.e.

CF(k,m) =CF(Jx,.m+1).
Additionally, — pA(QAN=pA(QATF)AQAT - is the theorem from

classic propositional calculus.
Thus, F—CF(g'j,m)> CF({j,m+1).

Case 2. Consider only the case when Fv -rule is applied (the situation with
Pv -rule will be the same). Let y € ¢; be a formula, which was subjected to the

application of Fv -rule at the (m+1) step, i.e. ¥ = Fvy/. Associated form of ¢ at the
stepmis AF(Jj,m)=yj A Fvyy, where y; is a conjunction of all formulae of &; for
the step m except for v .

If rank r(J;,m)=0, then CF({j,m)=AF({;.m=y;AFvy; and
following Fv-rule we obtain CF(Jj,m+1)=(y A Fvy)=CF({j,m), as far as this
rule does not affect ¢y, but it affects &j,y: CF (S ,M+D=(ja AFWV=Dy1). 7ju
is a conjunction of all formulae of &', for the step m.

If rank r(g’j,m) >0, then either
CF({j.m)= AF({}.m) A F(k = J) CF({sm) =7} A Fyvyy A F(k = J) CF(¢.m) or
CF({j.m)=AF(Jj.m) AP(J —K) CF({k,.m) =y A Fvy A P(J—k) CE(gy,m).

At the same time for the (m+1) step either
CR(jm+D)=y; AnFvy; AF(k—])CF({,m+1) or

CF({j.m+1) =y A Fvyy AP(j—K) CF ({m+1),

and only for i=j+1 CF(j.;,m+1) will be changed,
CF({jupsM+1) =7 jg ARV =Dy = AF (S, AF (v =Dy,

for all other values of i, CF({j,m + 1) remain unchanged.
Thus, basing on T1, T2, deduce that F—CF (¢ 'j,m) > CF({j,m +1)

Case 3. Let y € ¢ be a formula, which was subjected to the application of
v-rule at the (M+1) step, i.e. ¥ =y vy,. Associated form of £’ at the step m is
AF(Zj,m)=yj A(y1 Vv,), where y; is a conjunction of all formulae of £ for the

step m except for i .
If rank r(gj,m)=0, then CF({j,m)=AF({j.m=yjA(y;Vvy,) and



following the v-rule we obtain CF({ } M+D=y; Ay vy)ay; and

CR(CT.m+D=rj Ay Vi) Ay,
Deduce F—CF (¢ j,m) > CF(¢j,m+1) v CF({§,m+1) by the axiom AS.
If rank r(gj,m)>0, then either
CF(£j.m) = AF({}.m) A F(k = J) CF (G =7} A (W) v wr) A F(k = J) CF (i)
or
CF(¢}.m) = AF(£j.m) A P(j —K) CF({am) =7} A (W v w2) A P(j —K) CF({ie.m).
At the same time for the (m+1) step
CF({},m+1):7/J~ AV Ay AFKK=])CF({,,m+1) and
CF(éjz,m+1)=;/j AW Vviy) A, AF(Kk—])CF(S,m+1), where
CF(k,m)=CF({,m+1).
Deduce F—CF (¢ j,m) > CF(¢j,m+1) v CF({§,m+1) by the axiom AS.
Case 4. Let y € {'j be a formula, which was subjected to the application of
ViFi-rule at the (m+1) step, i.e. y = ViFiy, . Associated form of £’j at the step m is
AF({j,m)=yj AViFiy,, where y; is a conjunction of all formulae of ¢’ for the step
m except for v .
If rank r(¢,m)=0, then CF(J;,m)=AF(J;,m)=y;AViFiy,; and
following the ViFi-rule obtain CF(¢j,m+1) = AF(Sj,m) Ay =y AViFiy; Ayy.
Basing on the T1,T2, T9 and rules R3 — R6 deduce that
—7;j A ViFiy DY AVIiIFiy Ay,
If rank r(g’j,m) >0, then either
CF(Zj.m)=AF(gj,m A F(k—])CF({,m) =y AViFiy; A F(k—j) CF({y,m) or
CF(&j,m)=AF(Zj,m) A P(j —K) CF(Sy,m) =y A ViFiy AP(j—K) CF(Jy,m).
For the (m+1) step either
CFR(j.m+1)=y; AViFiy; AF(K=])CF(Sg,m+1) Ay or
CFR(jm+1D)=y; AViFiy; AP(j—K)CF({,m+1) Ay,.
At the same time
CF(S,m+1)=AF({y,m+1) A ViFiy;.
Check the implication F—CF(¢';,m) > CF({j,m+1):
=y AViFly ARK=]) 7k D7 AViIFIy Ay AFR(K= DOy A ViFiyg)
Deduce that F—CF(&j,m) > CF({j,m+1) from T1, T2, T9, T14 — T17

and rules R3 — R6.
Other cases (w =ViPiy,,w =3iFiy;,y =3iPiy;) can be proved

analogously.



Metatheorem 3.

If |=—|¢, then |— —Q
Proof:
Let ¢ be in FnPn-n.f.

[=—¢ means that the construction C, is closed, hence (from the definition
of closeness of C¢) each chain in it is also closed. Closeness of a chain Z,, € C¢ means
that there is a formulae list £; such that for some variable p both p and —p are in gj.
From the propositional axiom set of PTC(MT) conclude that — —AF (&;,n).

— —|CF(Z¢,n) is concluded from the theorems T1-T4, hence, following
the definition of a characteristic form of a construction C, — —CF(¢,n).

From the Lemma, — —CF (¢,1). Taking into account that CF(¢,1) = ¢ (0-
rule), deduce — —¢. End of proof.

Metatheorem 4.
o iff |=¢
Proof:

This metatheorem is concluded from metatheorems 1 and 3. End of proof.
Metatheorem 4 shows completeness of PTC(MT).

4. Conclusions and Future Work

The paper presents a step in the research of the temporal metric logic with
respect to the logical properties of a formal theory — completeness and soundness. It is
shown that propositional metric temporal calculus is complete and consistent.

Tableau construction rules presented in the paper give a basis for creation a
reasoner for first-order metric temporal calculus, which is more convenient for
knowledge representation.

The work will be continued in the following directions. First, decidability
of PTC(MT) should be checked, as far as PTC(MT) lacks finite model property. Second,
all results obtained for the propositional metric temporal system PTC(MT) will be
considered for the Description Logics family, which are de facto standard for
presentation of ontologies in the Semantic Web.
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