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Ontology building has drawn huge attention since early nineties of the XXth century as one of 
the approaches to semiotic modeling of a domain [1].  

According to Guarino [2] “ontology is a logical theory accounting for the intended meaning of 
a formal vocabulary”.  

Ontologies are widely used in different fields1: in scientific research in physics, biology, 
medicine; in business and industry; for intelligent information retrieval in local/global information 
systems, including WWW; in education; in natural language processing; for data/knowledge 
integration from distributed heterogeneous sources. 

Dynamic nature, ability to evolution is an inevitable feature of an arbitrary domain. Successful 
solutions of ontology-based data/knowledge integration, intelligent information retrieval from 
distributed sources are to take into account evolution of ontologies describing the knowledge of the 
information sources. 

Ontology versioning and change detection are one of the research challenges [4] for the 
Semantic Web. Recent works on ontology versioning pay special attention to ontology evolution 
logical analysis.  

Approaches to ontology changes detection and storage basically work on syntactic layer (see 
e.g.[5]), they are bounded to particular ontology definition language, and provide sets of 
heuristics/rules for change detection. Common drawbacks of this class of the approaches are discussed 
in [6]: several changes may influence (or even discard) one another and heuristics/rules may fail in 
detecting complex changes.    

Proof-theoretic approach to ontology evolution analysis, first introduced in MORE [7], 
overcomes the drawbacks of other approaches. First of all, it is ontology language-independent: high-
level language LTLm was introduced for changes analysis. Secondly, reasoning over ontology 
changes instead of querying changes was proposed, which allowed to rely not only on heuristics/rules 
of change detection, but to deduce complex changes. Finally, LTLm is based on temporal logic, which 
is natural as far as changes are characterized with time moments, when they occur. 

However, analysis of [7] has shown that the proposed temporal logic LTLm has its own 
drawbacks: it is impossible to define the distance between time points when changes occur, it is 
impossible to make complex queries binding both future and past moments, it is impossible to obtain 
the time point, when a particular change occur etc. Finally, the logical properties of LTLm were not 
investigated, and its computational complexity was not analyzed. 

Presented research aims at the development of temporal logics which will be free of the 
mentioned drawbacks. The paper provides comprehensive analysis of the proposed temporal logics. 

The basic temporal calculus constructed for reasoning over ontology changes is propositional 
metric temporal calculus PTC(MT), based on the propositional metric temporal language LMP, first 
introduced by A.Prior [8]. This language extends propositional symbols and connectives with two 
temporal modalities Fn (“it will be in n time points”) and Pn (“it was n time points before”).  

Definition 1. The alphabet of PTC(MT). 
Let ,...}',',,{ qpqpPROP =  be propositional symbols, ,...},,{ kmnNUM =  be a set of natural 

numbers and number “zero”, }0{∪N , ,...},,{ kjiNUMVAR =  be a set of numerical variables, 
,...},,{ 21 xxxNUMVARNUM =∪  be a set of names, defining numerical variables and the elements of 

NUM, ,...}2,1,{Pr == sPRED s  be a set of s-ary predicate symbols, defined over }0{∪N , 

                                                 
1 For more comprehensive review please see [3]. 



},,{ NUMVARNUMxPxFxMOD ∪∈=  be a set of modalities. Then well-formed formulae set WFF 
on symbols from PROP, NUM, NUMVAR, PRED and MOD consists of the following formulae: 

=:WFF  p| ϕ¬ | ψϕ ∧ | ψϕ ∨ | ψϕ ⊃ | ),...,(Pr 1 s
s xx | ϕFx | ϕPx | ϕi∃ | ϕi∀ , 

for each WFF∈ϕ .  
Axioms and the deduction rules for PTC(MT) are combined of propositional axioms/deduction 

rules and temporal axioms/deduction rules, defining time to be unbounded linear and discrete. 

Definition 2. Model of PTC(MT). 
PTC(MT) is interpreted in Kripke model M >=< s

PREDPF RRdistW ξξ ,},,{,, , where W  is a 
non-empty set of possible worlds, }0{: ∪→× NWWdist  is a metric on W, PF RR ,  are accessibility 

relations to the future and to the past, WPROP 2: →ξ is an interpretation function, assigning each 

propositional symbol its truth value in each possible world, and 
s

PRED
Ws PRED 2: →ξ   is an 

interpretation function for predicate symbols. 
Constructive proofs of PTC(MT) soundness, completeness [9] and decidability [10] were 

obtained with help of metric semantic tableau rules introduced. Computational complexity was shown 
to be EXPTIME. 

PTC(MT) allows satisfiability checking for statements about future/past situation at given 
distances (e.g. )(25 ψϕ ¬∧ PF ), about possible future/past situation (e.g. )(5 ϕϕ ¬∃∧ iPiF ), about all 
possible future/past situations (e.g. )(5 ϕϕ ¬∀∧ iPiF ). 

It is easy to see that indirectly all statements of PTC(MT) are evaluated against some “current” 
state, though direct definition of the current state (or version, in terms of ontology versioning) is not 
allowed. This shortcoming may be eliminated with help of hybridization of PTC(MT). 

Hybrid logics (see introduction in [11]) form a class of modal logics that allows referring to 
elements of Kripke models – “possible worlds” – directly in formulae.  

Logical languages used for hybrid logic are at least two-sorted: they have a special sort of 
atomic objects called nominals. Each nominal names exactly one possible world of Kripke model. 

Definition 3. The alphabet of Hybrid PTC(MT), HPTC(MT). 
Given an alphabet of PTC(MT),  let ,...},,{ cbaNOM =  be a non-empty set of nominals, @a – 

be satisfaction operator (“at the world named a it is true that…”). Then well-formed formulae set WFF 
on symbols from NOM, PROP, NUM, NUMVAR, PRED, MOD with help of operator @a consists of 
the following formulae: 

=:WFF  a | p| ϕ¬ | ψϕ ∧ | ψϕ ∨ | ψϕ ⊃ | ),...,(Pr 1 s
s xx | ϕFx | ϕPx | ϕi∃ | ϕi∀ | @aϕ , 

for each WFF∈ϕ . 
 Axioms and the deduction rules of HPTC(MT) extend those for PTC(MT) to incorporate 
satisfaction operator properties. Model definition for HPTC(MT) extends the interpretation function  to 
deal with nominals, WNOMPROP 2: →∪ξ . 
 HPTC(MT) is sound, complete and decidable [12]. The proofs are also constructive and rely 
on hybrid tableau rules, adopted for metric temporal logic. 
 HPTC(MT) allows satisfiability checking for all PTC(MT) statements against given particular 
state. E.g. it is possible to evaluate @a ))(5( ϕϕ ¬∀∧ iPiF , where “a" – is a name of some ontology 
version. 
 The results obtained for propositional metric temporal calculus and its hybrid extension can be 
embedded into known reasoners for propositional modal logics.  

In this respect of great interest is the adaptation of the tableau rules proposed for PTC(MT) and 
HPTC(MT) for reasoning over Description Logics [13] family of ontology languages, widely used in 
Semantic Web applications.  

Presented research introduces decidable description logic ALCIO(MT) for metric linear 
unbounded time. 



Definition 4. Description Logic ALCIO(MT). 
Let BA,  denote atomic non-temporal concepts, R  - atomic role, FE,  - complex non-temporal 
concepts, P  - complex role, DC,  - complex temporal concept, }{o  - object nominal (denoting an 
individual is some possible world),  }{a  - temporal nominal (denoting possible world, e.g. ontology 
version). Then the following rules generate complex concepts/roles: 

E, F  → A | top | bottom | E intersect F | E union F | not E | ∃R.E  | ∀R.E | }{o  
    P  →  R | 1−P  
C, D →  E | }{a | C intersect D | C union D | C@ }{a | Fn C | Pn C |  
              | somefuture C | somepast C | allfuture C | allpast C 

Existential modalities somefuture and somepast are semantically equivalent to modalities 
iPiiFi ∃∃ ,  used in PTC(MT). Universal modalities allfuture and allpast are equivalent to modalities 
iPiiFi ∀∀ , of PTC(MT). 

Definition 5. The model of ALCIO(MT). 
ALCIO(MT) is interpreted over Kripke model M >Δ=< IRRdist PF },,{,, , where 

}0{}{ ∪∈Δ=Δ Nk
k is a set of possible worlds, kΔ  is a set of individuals in k-th possible world, 

}0{: ∪→Δ×Δ Ndist  is a metric on Δ , PF RR ,  are accessibility relations, I is an interpretation 
function. 
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