
APPLICATION OF DIAKOPTICAL MAS FRAMEWORK
TO PLANNING PROCESS MODELLING

Borue, S. U., Ermolayev, V. A. Tolok, V. A.

Dept. of Mathematical Modelling and Information Technologies,

Zaporozhye State University,

66, Zhukovskogo st., 330600, Zaporozhye, Ukraine, tel/fax:+380 61 264 17 24,

E-mail: {bsu, eva, tolok}@zsu.zaporizhzhe.ua

Abstract. The paper presents the case study of the application of the theoretical framework of modelling the processes of

information interchange among the members of evolving intellectual agent communities to modelling of one of practically
important types of business processes - a planning process. A business process in frame of the presented research is denoted as a set
(task) of atomic works. In the frame of the applied modelling approach the members of dynamically formed, scalable and evolving
intellectual agent communities act as functional components performing the atomic works of such a task. The principal alterity of
the approach is the usage of parametric feedbacks and, alternatively, agent state constraints to atomic works execution sequence
control. Case study analysis shows that the framework is practically applicable to modelling of planning processes. Furthermore, the
hypothesis that the framework is applicable to another types of business processes is discussed.

:gghlZpby� < klZlv_ jZkkfZljb\Z_lky ijbf_g_gb_ l_hj_lbq_kdh]h ZiiZjZlZ
 fh^_ebjh\Zgby ijhp_kkh\ bgnhjfZpbhggh]h

h[f_gZ \ khh[s_kl\Zo bgl_ee_dlmZevguo Z]_glh\ d fh^_ebjh\Zgbx h^gh]h ba ijZdlbq_kdb \Z`guo lbih\ [bag_k ijhp_kkh\

� ijhp_kkZ ieZgbjh\Zgby� < jZfdZo ij_^klZ\ey_fuo bkke_^h\Zgbc [bag_k�ijhp_kk hij_^_ey_lky dZd fgh`_kl\h �aZ^Zgb_��

khklhys__ ba ZlhfZjguo jZ[hl� NmgdpbhgZevgufb dhfihg_glZfb� \uihegyxsbfb ZlhfZjgu_ jZ[hlu lZdh]h aZ^Zgby� \
ijbf_g_gghf ih^oh^_ d fh^_ebjh\Zgbx y\eyxlky qe_gu ^bgZfbq_kdb nhjfbjmxsboky� fZkrlZ[bjm_fuo b

w\hexpbhgbjmxsbo khh[s_kl\ Z]_glh\� IjbgpbibZevguf hlebqb_f ^Zggh]h ih^oh^Z y\ey_lky ijbf_g_gb_

iZjZf_ljbq_kdbo h[jZlguo k\ya_c b� Zevl_jgZlb\gh� h]jZgbq_gbc khklhygbc Z]_glh\ ^ey mijZ\e_gby ihke_^h\Zl_evghklvx
\uiheg_gby ZlhfZjguo jZ[hl� :gZeba ij_^klZ\e_ggh]h ijbeh`_gby ihdZau\Z_l� qlh ^Zgguc ZiiZjZl ijZdlbq_kdb

ijbf_gbf d fh^_ebjh\Zgbx ijhp_kkh\ ieZgbjh\Zgby� ;he__ lh]h� \u^\b]Z_lky]bihl_aZ h _]h ijbf_gbfhklb d ^jm]bf

lbiZf [bag_k ijhp_kkh\�

Keywords: Business Processes, Intelligent Agent, Evolving Agents Community, Scalability.
Dexq_\u_ keh\Z� ;bag_k ijhp_kk� bgl_ee_dlmZevguc Z]_gl� w\hexpbhgbjmxs__ khh[s_kl\h Z]_glh\� fZkrlZ[bjm_fhklv.

The paper is submitted to UkrPROG'2000, May 23-26, 2000, Kiev, Ukraine.

 The research presented is run in frame of the Project financed by Ukrainian Ministry of Education, Grant � 0199Y1571.
Intermediate results were reported and discussed at ESPIRIT AgentLink I2A SIG meetings.

APPLICATION OF DIAKOPTICAL MAS FRAMEWORK
TO PLANNING PROCESS MODELLING

Borue, S. U., Ermolayev, V. A. Tolok, V. A.

Dept. of Mathematical Modelling and Information Technologies,

Zaporozhye State University,

66, Zhukovskogo st., 330600, Zaporozhye, Ukraine, tel/fax:+380 61 264 17 24,

E-mail: {bsu, eva, tolok}@zsu.zaporizhzhe.ua

Abstract. The paper presents the case study of the application of the theoretical framework to modelling of one of practically

important types of business processes - a planning process. A business process in frame of the presented research is denoted as a set
(task) of atomic works. The diakoptical framework applied models business processes as the processes of information interchange
among the members of dynamically formed, scalable and evolving intellectual agent communities. The principal alterity of the
approach is the usage of parametric feedbacks and, alternatively, agent state constraints to atomic works execution sequence control.
Case study analysis shows that the framework is practically applicable to modelling of planning processes. Furthermore, the
hypothesis that the framework is applicable to another types of business processes is discussed.

:gghlZpby� < klZlv_ jZkkfZljb\Z_lky ijbf_g_gb_ l_hj_lbq_kdh]h ZiiZjZlZ
 fh^_ebjh\Zgby ijhp_kkh\ bgnhjfZpbhggh]h

h[f_gZ \ khh[s_kl\Zo bgl_ee_dlmZevguo Z]_glh\ d fh^_ebjh\Zgbx h^gh]h ba ijZdlbq_kdb \Z`guo lbih\ [bag_k ijhp_kkh\

� ijhp_kkZ ieZgbjh\Zgby� < jZfdZo ij_^klZ\ey_fuo bkke_^h\Zgbc [bag_k�ijhp_kk hij_^_ey_lky dZd fgh`_kl\h �aZ^Zgb_��

khklhys__ ba ZlhfZjguo jZ[hl� NmgdpbhgZevgufb dhfihg_glZfb� \uihegyxsbfb ZlhfZjgu_ jZ[hlu lZdh]h aZ^Zgby� \
ijbf_g_gghf ih^oh^_ d fh^_ebjh\Zgbx y\eyxlky qe_gu ^bgZfbq_kdb nhjfbjmxsboky� fZkrlZ[bjm_fuo b

w\hexpbhgbjmxsbo khh[s_kl\ Z]_glh\� IjbgpbibZevguf hlebqb_f ^Zggh]h ih^oh^Z y\ey_lky ijbf_g_gb_

iZjZf_ljbq_kdbo h[jZlguo k\ya_c b� Zevl_jgZlb\gh� h]jZgbq_gbc khklhygbc Z]_glh\ ^ey mijZ\e_gby ihke_^h\Zl_evghklvx
\uiheg_gby ZlhfZjguo jZ[hl� :gZeba ij_^klZ\e_ggh]h ijbeh`_gby ihdZau\Z_l� qlh ^Zgguc ZiiZjZl ijZdlbq_kdb

ijbf_gbf d fh^_ebjh\Zgbx ijhp_kkh\ ieZgbjh\Zgby� ;he__ lh]h� \u^\b]Z_lky]bihl_aZ h _]h ijbf_gbfhklb d ^jm]bf

lbiZf [bag_k ijhp_kkh\�

Introduction
The models of the processes of information interchange in distributed intelligent systems are often based on the usage
of structured collections of rigid relationships among the participating functional nodes. These representations are
inherited from the known organisational and information models and unfortunately are too much static and do not fully
cover the things we humans deal with in real life. If we take decision making process for an instance, it can not be
adequately modelled by, say, a hierarchy of rigidly positioned actors. Humans apply much more soft interrelationships
to solve the problem: brainstorming, informal discussion, negotiation, whatever. Another big pitfall is that rigid
relationship models are not really scalable. The demand for modelling soft temporary relationships (like associations,
discussions in real life) in scalable systems is emerging in diverse areas: intelligent information integration, enterprise
modelling, business process modelling, simulation, etc. The solutions today are mostly represented by the frameworks,
architectures and implementations exploiting the paradigms of an Intellectual Agent and a Multi Agent System (MAS).
Good examples from various application domains are [1-3].

The authors have proposed [4] the framework for modelling of the processes of functional interrelationship among the
distributed components (presented by intellectual agents) of a dynamic multifunctional enterprise/department
information system focusing on the fact that the associations between participating nodes/actors are soft and are
changing in time. The approach is based upon the principle of diakoptics [5] and macromodelling methodology [6].
Diakoptics, as understood in this work, is the equilibrium upon the following a bit tricky things:
x Representation of system components as well as the system as a whole by means of the functionally equivalent,

unified and simplified software model (an intellectual agent with its behaviour models presented by macromodel
programs)

x Embeddment of components' interrelationship topology into component macromodel
x Embeddment of components' specialisation into component macromodel

The advantages of the framework are seen as follows: there is the possibility to apply generic models to presenting the
components, their intercommunication, subsystems and a system as a whole; there are good opportunities to operate

 The research presented is run in frame of the Project financed by Ukrainian Ministry of Education, Grant � 0199Y1571.
Intermediate results were reported and discussed at ESPIRIT AgentLink I2A SIG meetings.

with subsystems by means of much more simple component models irrespectively of the nest levels inside; there are the
capabilities to use generic architectures, interfaces and finally implement well scalable applications. Instead of creating
pretty complex, rigid models with tightly linked components, the preference of the method is to operate with collections
of 'autonomous' agents dynamically forming communities for one or another process of information interchange (a
task). This reduces complexity, adds movement and is quite appropriate to model business processes as the processes of
information interchange by solving the problem by part.

In this paper we leave aside in-depth discussion of semantic aspects (ontology representation, interoperability, etc.) as
well as architectural and implementation issues leaving this peace of the cake for future publications. We concentrate on
the verification of the applicability of the framework to modelling of one of practically important types of business
processes - a planning process.

The paper is structured as follows. Section 1 briefly presents the framework used in planning process case study.
Section 2 provides the case study. The process of an Information System (IS) development proposal preparation is
modelled by simulation. Participating agents dynamically form the community for the task, which is consequently
solved by part. After the task is accomplished the results are used to generate the plan for the real performance. Section
3 provides the analysis of the case study. Finally the results are summarised and the directions of the future work are
presented.

1. Modelling Framework
The main idea used in the framework is that a business process is modelled as the process of information interchange
among the members of a dynamic community of intellectual functional actors - a functional system. The actors are
modelled by intellectual information agents capable to communicate with each other by means of the defined set of
communicative acts with parametric feedbacks [4]. These communicative acts comply with ACL [7] and KQML [8]
capabilities. A task is assumed to be the set of atomic works. Each actor is capable to perform some atomic works from
the set of permissible atomic works of the functional system.

The framework provides the generic model for a functional actor -- agents' model, the generic communication model for
task-related actors' community -- agents' community model and the generic model for the task execution -- process
model.

Fig. 1. Functional system/component model.

Project
Mngr

Progr.
Group

Doc.
Design

Testers
Group

DBA
Group

User
Liaison

PROG

IS
Department

� ������ �� ZZ:
D

a
DBA

PM

TST

LIA

DOC

PM

PM

a
a

Functional
Component

i

��:)
L
2`��^ U

L
G
L

S
LL ::::

J
L:

U
L:

G
L: `�^

a J
L

G
LL :::

�

S
L:

�

�

�
�

At the agent level the framework uses a kind of
BDI [9] model. It provides the key agent's
characteristics [10] of situatedness, autonomy and
flexibility. Its role is to receive external influences,
to verify if the incoming influence complies with
the agent's role and finally to adjust its behaviour
and perform appropriate macromodel program --
i.e. execute or reject the atomic work requested by
the input influence. The function of the
macromodel is also to form the feedback containing
the results. The results may be presented as
functions from the parameters of the incoming
influence. Formally (see [4] for details) the generic
agent comprises its sensory interface, the cascade of
3 finite-state machines for incoming influence
verification and the macromodel execution block.

At the community level it is assumed that the agents
taking part in the process of task execution
communicate by means of the following
performatives:
x Directive - the routine to influence the

counterpart to unconditionally execute the
atomic work.

x Determined request - the routine to influence
the counterpart to execute the atomic work and
to request the results back.

x Determined request with results analysis - the
routine to influence the counterpart to execute
determined request and consequently to reason
about the parametrical results received as the reaction.

x Undetermined request with results analyses - the routine to broadcast the influence in case the executor agent is
unknown. The influence is multicasted to every agent within the community. The results are afterwards compared
and appropriate reasoning is performed.

At the functional system level some basic assumptions are made to simplify the framework. Functional community
members are assumed to be strongly oriented to teamwork and fair play. Successful task execution has higher priority
than local goals of a certain agent. The agents joining the community are bounded to deliver truthful results even if it
contradicts to their local goals.

Functional System/Component Model. The model of a functional system as well as a functional component
model is built upon the idea of "absorption" and "generation" of atomic works from the set of permissible works

������� �� ��� � -- refer to Fig. 1. It is considered that the sensory input of the functional component i admits a task

::L � . A certain part of its works S
L: may be performed ("absorbed") by the given component and the remaining

part of works may be either redirected to another system's components G
L: in case functional component knows the

recipient(s), or rejected U
L: . Functional component may as well generate additional set of works J

L: to complete the

execution of works S
L: . J

L: as well as G
L: are redirected to another components:

L
L
2L ::):

a
�� oo , (1a)

 where: `��^ U
L

G
L

S
LL :::: , `�^

a J
L

G
LL ::: , ��:) L

2 - macromodel program.

In a special case component i may generate a new set of works J
L: without been invoked by incoming influence L: -

i.e. may "summon" a new task:

L
L
2 ::)

a
�� o , (1b)

 where: `^
a J

LL :: , ��:) L
2 - macromodel program.

?�

i

��:)
L
2

J
L:

S
L:

G
L:

D
3

]
D

:3

D
�

.

a

j

��:)
M
2

J
M:

S
M:

G
M:

D
3

t WWW QQ '� �� QW t0

Fig.2. Process model.

Thus, the task of functional component/system model is appropriate execution of (1a) and (1b) - see Fig. 1. The model
is constrained by the rule that the duration of execution of each atomic work :Z M � is the definite time interval W' .

A functional system is tailored to perform processes. A process is denoted as the procedure of task execution. Process

D3 starts with generation of the new task ::D � . Task D: as well as the additional tasks D:
a

are considered to be

linked to process D3 and labelled with the unique identifier of this process. The component is considered to be linked

to process D3 in case it has absorbed the part of D: , D:
a

, or has generated J
D: .

Process D3 is considered to be completed in case all the components stopped to absorb the atomic works of the tasks

linked to process D3 . The set of works]

D

:
3

 not absorbed in the process of D3 is denoted as the set of inexecutable

works. See the chart on Fig 2.

Modelling of process D3 (steady-state mode) is performed by applying (1b) and (1a) to all of the components of the

system until the process is completed.

Dependency ��:) L
2 is modelled in frame of generic agent model [4], or by any other appropriate method. The

requirement to this part of functional component model is the adequate execution of (1a), (1b).

For practice it seems to be reasonable to restrict the set of system's permissible atomic works and to consider it to be

finite: `������^ �� V
ZZZ: . This restriction implies the possibility to apply macromodelling principle [6] to functional

system modelling. Macromodelling provides the possibility to skip topological analyses of system components and
assumes utilisation of the benefits of diakoptical approach. Modelling of the system as a whole while performing a task
is herein organised as a two-level process performed sequentially at discrete time points tn, tn+1 = tn + W' .

Task Execution Model. Let `������^ �� V
ZZZ: be the set of permissible atomic works of the functional system.

At the first (upper) level the assembly of all the components' states into the conjoint system states model at the moment
tn+ W' is performed. The conjoint model is presented in the form of matrix �� WWQ '�: with dimension VuP , where

P is the number of system components and V is the number of atomic works in : . The rows of matrix : (see Fig.

3.) are the vectors `�����������^ �� V
NNNN ML 4 reflecting components' states, where MN is the state of the component i

with respect to the execution of atomic work MZ . In the simplest case the role of parameter MN is as follows:

� MN - the component is executing atomic work MZ ; �! ON M - the component is executing the work MZ and l

similar works are waiting in line;

�� ON M - the component was capable but has not executed l atomic works MZ (idle state).

System states matrix �� WWQ '�: is formed from the matrixes i� (dimension VuP) representing component states.

Matrixes i� are produced by the executable ��:) L
2 of the component model at the second modelling level to

provide the inputs to following formula:

�

 :
n

i
i

1

K . (2)

In addition work delays vector aD of the process D3 is updated in case one or more works MZ from iW are redirected

by any functional component to itself:

1][][� jDjD aa (3)

At the second (lower) level the production of i� is performed for each system component. The components, as

mentioned before, are modelled arbitrarily (��:) L
2), but it is provided that the input information for component i is the

vector L4 , the matrix �� QW: and the matrix i� defined for the previous time point QW . Matrix i� is built according to

the rule presented at Fig. 4. and should adequately reflect the behaviour of the component within the time interval
@�@ WWW QQ '� ,

where:

OM� , LO z : 1 - component i allocates work M� to component l,

 0 - otherwise

LMN : -1 - component absorbs (or is capable to perform) work M� within interval @�@ WWW QQ '� ,

 1 - component i allocates work M� to itself,

 0 - component i is not capable to perform work M� within given time interval

 @�@ WWW QQ '� .

The analysis of �� QW: values may thus provide to univocally

evaluate component load, idle state share within each time
interval @�@ WWW QQ '� and therefore to reason about the

necessity of changing its behaviour ��:) L
2 in the future.

2. Planning Process Case Study
One of the possible applications of the presented modelling
framework is business process planning. The main idea is
close to the one of ADEPT [1] project: modelling business
processes as a collections of autonomous, problem solving
agents which interact to model business process execution.
Corresponding plan may thus be afterwards automatically
generated.

Let's discuss how the framework may be practically applied to
information system design project planning. We'll assume that
the organisational structure, which may be assigned to the
project implementation, is that shown on Fig. 1. -- IS
Department. Other assumptions are:
x IS Department shown on Fig. 1. is one of many

candidates to be selected for the project. From the point
of view of the competition IS Department as well as the
other parties are considered to be the member agents
representing functional components of the higher level
community.

x Agents community of IS Department is modelled in
details and comprises Project Manager (PM agent), DBA
Group (DBA agent), Programmers Group (PROG agent),
Documentation Design Group (DOC agent), Testers
Group (TST agent), User/Customer Liaison Group (LIA
agent) as functional components.

x In case on some stage the necessity emerges to go in
more details with one of the functional components listed, this component may be modelled as a functional system
- agents community.

The process starts at the point �W when external influence

`��
BBB3U
^ ��� <;3ODQW'HYHORSPHQ,6RSRVHZ:D

with the parameters and the result descriptions

�^� ! � ILJXUH; budget �! � ILJXUHduration �B ! � QDPHILOHemplateProposal_T

 `B ! � QDPHILOHescrProposal_D ;

�`�����^� emplateProposal_Tdurationbudget Proposal\3RVVLELOLW<

comes to PM's sensory input. PM performs at least the following actions:

1. Input influence verification. Within this step PM routine is to check out if the input influence, its parameters and
result descriptions comply with PM's role and current state constraints. The further behaviour of PM (i.e.
macromodel program) is chosen from two alternatives: the influence is accepted or the influence is rejected. For
brevity rejection macromodels will not be discussed in this case study. We'll further consider that all the input
influences are accepted and appropriate macromodel programs are executed.

2. Input work execution and agent state change. Within this step PM's macromodel)(a
PM

O WF (in accordance

with software project planning ontology provided by the community ontology agent) decomposes incoming work -
i.e. generates the set of works corresponding to the project stages following the rule (1a) with:

`��
BBB3U
^ ��� <;3ODQW'HYHORSPHQ,6RSRVHZ:
S
30 , � G

30: , � U
30: ,

�
t . . . WWW QQ '� �� QW t0

works in line

execution

idle

�4 �� ���� NN ...
VPN

 ...
 '�: �� WWQ L4 = �� �� LL NN ... �LMN ...

VPN

 ...

P4 �� �� PP NN ...
VPN

°
¯

°
®

�

!

�

�

�

O

O

Fig. 3. System state at tn+ W'

�Z �Z …
V

Z

Component 1 ��N ��N …
V�N

Component 2 ��N ��N …
V�N

 L. …

Component i �LN �LN …
VLN

…
Component n �PN �PN …

VPN

Fig. 4. Component capabilities and
 intentions

i hi @@ '

J
30: = { �Z ('Assemble Project Proposal', X1, Y1),

 �Z ('Choose best DB Schemata Plan Bid', X2, Y2),

 �Z ('Choose best Software Model Plan Bid', X3, Y3),

 �Z ('Choose best REQ Analyses Plan Bid', X4, Y4),

 �Z ('Analyse requirements', X5, Y5),

 �Z ('Design database schemata', X6, Y6),

 �Z ('Design software model', X7, Y7),

 �Z ('Program the software', X8, Y8),

...........
 ��Z ('Perform customers training ', X15, Y15)}.

At this step of macromodel program execution the change of PM's state �V to the state �V by adding additional state

constraints may be performed in case it is requested by the behaviour rule provided by appropriate ontology or is
encapsulated within the macromodel program.

3. Component matrix)(0tPMK generation. Within this step PM macromodel generates �� �W30. as shown on

Fig. 5.

�� �W30. may be interpreted as follows: for the next

modelling step WW '�� works �Z , �Z , �Z , �Z are

planned for self-performance; works �Z , �Z , �Z are

redirected to more than one functional component: �Z - to

DBA and LIA agents, �Z - to DBA, PROG and LIA

agents, �Z - to DBA, PROG and LIA agents. The reason

for these multiply redirections is the attempt to obtain
optimal task performance by choosing the component with
the best bid. Another reason may be that PM doesn't really
know well what are the duties of DBA, PROG, LIA and
wants to gain some experience for the future. We do not
however consider that PM may decide to assign works to
multiply counterparts for partial execution as far as this
assumption contradict to work atomicity. Works �Z ,

��Z are assigned explicitly to agents PROG and LIA.

System state matrix �� � WWD '�: related to the process

},,'{' YXnt_Plan_DevelopmePropose_ISWa will

obviously look like shown on Fig. 6. as all agents except
PM are idle within WW '�� .

Let's examine the activities of PM, DBA and LIA agents at
the next modelling step WWW '� �� .

PM accepts the set of works
 30: { �Z ('Assemble project proposal', X1, Y1),

 �Z ('Choose best DB Schemata Plan Bid', X2, Y2),},

 �Z ('Choose best Software Model Plan Bid', X3, Y3),

 �Z ('Choose best REQ Analyses Plan Bid', X4, Y4)}

with the parameters and result descriptions for 1w :

 �^� ! � ILJXUH; budget �! � ILJXUHduration

 �B ! � QDPHILOHemplateProposal_T

 �B ! � QDPHILOHescrProposal_D

 ������

a
�����

a
�

a
�

a
�

a
<<<<< },

 �`�����^� emplateProposal_Tdurationbudget Proposal\3RVVLELOLW<

As far as at �W the parameters ������

a
�����

a
�

a
�

a
�

a
<<<<< do not yet contain valid values, PM's finite-state machine

;) resolves into rejection state and work �Z is classified as belonging to the set of redirected works G
30: . Thus,

�Z �Z �Z �Z �Z �Z �Z �Z … ��Z

DBA 0 0 0 0 1 1 1 0 0
PROG 0 0 0 0 0 1 1 1 0

 30. PM 1 1 1 1 0 0 0 0 ... 0

DOC 0 0 0 0 0 0 0 0 0
TST 0 0 0 0 0 0 0 0 0
LIA 0 0 0 0 1 1 1 0 1

Fig. 5. PM capabilities and intentions for the task
 `��
^
 <;GHYHORS,6:D within @�@ �� WWW '� .

'%$4 0 0 0 0 1 1 1 0 0

352*4 0 0 0 0 0 1 1 0 0

 :D 304 1 1 1 1 0 0 0 0 … 0

'2&4 0 0 0 0 0 0 0 1 0

7674 0 0 0 0 0 0 0 0 0

/,$4 0 0 0 0 1 1 1 0 1

Fig. 6. System state (related to D:) at WW '�� .

work �Z is actually delayed at least for the period of W' and PM macromodel adds 1 to element �G of the process

delays vector D' . Work �Z is again scheduled to PM for the next modelling step �W . The same is true for works �Z ,

�Z , �Z as well.

DBA accepts the set of works '%$: { �Z ('Analyse requirements', X5, Y5), �Z ('Design database schemata', X6,

Y6), �Z ('Design software model', X7, Y7)} with corresponding parameters and result descriptions:

�; ={ �
�[=(budget=), �

�[=(duration=<d>),

 �
�[=(Plan_Template=<file_name>), �

�[=(Step_Descr=<file_name>) },

�< ={ �
�\ =(Possibility(budget, duration)),

�
�\ =(Plan_File_Name(Plan_Template)) };

�; ={ �
�[=(budget=), �

�[=(duration=<d>),

 �
�
[=(Plan_Template=<file_name>), �

�[=(Step_Descr=<file_name>) },

�< ={ �
�\ =(Possibility(budget, duration)),

�
�\ =(Plan_File_Name(Plan_Template)) };

�; ={ �
�[=(budget=), �

�[=(duration=<d>),

 �
�[=(Plan_Template=<file_name>), �

�[=(Step_Descr=<file_name>) },

�< ={ �
�\ =(Possibility(budget, duration)),

�
�\ =(Plan_File_Name(Plan_Template)) };

where: Possibility(budget, duration) is the result description presented on Fig. 7.; Plan_File_Name(Plan_Template) is
estimated to be either returned as string "DUMMY" in case the plan has not been produced, or as string containing the
valid file name produced according to Plan_Template.

The processing of 'Analyse requirements' policy by DBA's finite state machine $) leads to the rejection of this policy

as it is considered in our case study to be unauthorised for DBA. Rejection policy executor forms results vector

}"",{
~
5 DUMMYY O . The same reaction will be produced while processing 'Design software model' work:

}"",{
~
7 DUMMYY O . Where O is the matrix produced according to the rule given on Fig. 7. and containing zero

possibility values: 5,...,1,5,..,1,0 jiijO . 'Design database schemata' work is performed by DBA and the

following result is returned:

`��B��

����

����

���

����

���

���

���

���

���

����
����������������

�����������������

����������������

^
a
� ;/63/$1'%6&+<

»
»
»
»
»
»

¼

º

«
«
«
«
«
«

¬

ª

 , (4)

LIA agent accepts the same as DBA set of works /,$: { �Z ('Analyse requirements', X5, Y5), �Z ('Design

database schemata', X6, Y6), �Z ('Design software model', X7, Y7)}. 'Analyse requirements' work is performed by LIA
and the following result is returned:

'%$4 0 0 0 0 0 0 0 0 0 DBA 0 0 0 0 1 0 1 0 0

352*4 0 0 0 0 0 0 0 0 0 PROG 0 0 0 0 1 1 0 0 0

 :D 304 1 1 1 1 0 0 0 0 … 0 PM 0 0 0 0 0 0 0 0 … 0

'2&4 0 0 0 0 0 0 0 0 0 DOC 0 0 0 0 0 0 0 0 0

7674 0 0 0 0 0 0 0 0 0 TST 0 0 0 0 0 0 0 0 0

/,$4 0 0 0 0 0 0 0 0 0 LIA 0 0 0 0 0 1 1 0 0

Fig. 8. System state and inexecutable works (related to D:) at WW '�� .

3

]

D

:

0.
5d

0.
8d

1.
0d

1.
5d

1.
8d

0.5b p p p p p
0.8b p p p p p
1.0b p p p p p
1.5b p p p p p
1.8b p p p p p

Possibility: estimated
values � �����S

Fig. 7. Result description
 example.

`��B��

����

����

���

���

���

���

���

���

���

����
����������������

�����������������

�����������������

^
a
� ;/63/$15(4<

»
»
»
»
»
»

¼

º

«
«
«
«
«
«

¬

ª

 , (5)

while works �Z , �Z are rejected as unauthorised with the results }"",{
~
3 DUMMYY O , }"",{

~
4 DUMMYY O .

System state matrix �� � WWD '�: and rejected works matrix �� � WW:]

D

'�
3

 apparently look like shown on Fig. 8.

At the next time point �W PM agent receives the task

 30: { �Z ('Assemble project proposal', X1, Y1),

 �Z ('Choose best DB Schemata Plan Bid', X2, Y2),},

 �Z ('Choose best Software Model Plan Bid', X3, Y3),

 �Z ('Choose best REQ Analyses Plan Bid', X4, Y4)}

with

`
a

�
a

^ ���
/,$'%$ <<; ,

 �< { �
�
\ =(Possibility(budget, duration)),

�
�
\ =(Plan_File_Name(Plan_Template))};

`
a

�
a

�
a

^ ����
/,$352*'%$ <<<; ,

 �< { �
�\ =(Possibility(budget, duration)),

 �
�\ =(Plan_File_Name(Plan_Template))};

`
a

�
a

�
a

^ ����
/,$352*'%$ <<<; ,

 �< { �
�\ =(Possibility(budget, duration)),

 �
�\ =(Plan_File_Name(Plan_Template))};

and is ready to perform the works �Z , �Z , �Z . Work �Z

is again delayed and scheduled for the next modelling step.
The task of PM's macromodels for �Z , �Z , �Z is actually

to choose optimal plans from the accepted bids according to the provided Possibility feedbacks. In our case the task is
rather simple as far as only one positive bid per each work has been received: LIA's for �Z , DBA's for �Z , and

PROG's for �Z . The results of this step are that presented on Fig. 9. Note that functional components DBA, PROG,

LIA are idle within discussed interval @�@ �� WWW '� , though they are capable to perform some works.

The similar optimisation work �Z is performed by PM's macromodel within @�@ �� WWW '� . The work is to assemble the

resulting project plan using plans provided by other community members (������

a
�����

a
�

a
�

a
�

a
<<<<<). System state is

presented on Fig. 10. The resulting Possibility (pessimistic estimation) is as follows:

Though the task D: at �W has already been accomplished one more modelling step is needed for to check if the agents

have stopped to absorb incoming works. Final step results are shown on Fig. 11.

»
»
»
»
»
»

¼

º

«
«
«
«
«
«

¬

ª

����

����

����

���

���

���

���

���

����

���
�����������������

�����������������

����������������

�a�����a�a�a�aPLQ�a �
��

�
�

�
�

�
�

�
�

�
� \\\\\\ (6)

'%$4 0 0 0 0 0 -1 0 0 0

352*4 0 0 0 0 0 0 -1 0 0

 :D 304 1 0 0 0 0 0 0 0 … 0

'2&4 0 0 0 0 0 0 0 -1 0

7674 0 0 0 0 0 0 0 0 0

/,$4 0 0 0 0 -1 0 0 0 -1

Fig. 9. System state (related to D:) at WW '�� .

'%$4 0 0 0 0 0 -2 0 0 0

352*4 0 0 0 0 0 0 -2 0 0

 :D 304 0 -1 -1 -1 0 0 0 0 … 0

'2&4 0 0 0 0 0 0 0 -2 0

7674 0 0 0 0 0 0 0 0 0

/,$4 0 0 0 0 -2 0 0 0 -2

Fig. 10. System state (related to D:) at WW '�� .

3. Case Study Analysis
If we analyse the results of Planning Process modelling we may figure out the following:
1. Parametric feedback for modelling of co-ordination and negotiation. The resulting Possibility (6)
shows that the proposed project may be unconditionally performed with increased budget (1.8b) even in shorter time
then it is requested - 0.8d. In case project budget is not subject to be increased the project may be accomplished in
requested time with budget starting from 1.0b. To say generally, parametrical feedbacks provided by the framework
make modelling of co-ordination (like CNP or brokering) or negotiation (like auction) protocols by means of work
sequences quite simple.

2. Learning and behaviour evolution.]

D

:
3

analysis shows that works �Z , �Z , �Z had been rejected by

some agents, though they have finally been performed. The inferences are:]

D

:
3

may be further used as a tip for more

accurate work assignments in the modelling of planning processes - agent PM learns about the capabilities of other
community members related to the process discussed and thus adapts its behaviour. We may consider work LZ to be

inexecutable by the agents community involved into the process D3 only if the column i of]

D

:
3

doesn't contain zero

values. There is however no answer to the question about the behaviour of the community in case new member agents

with new capabilities (for instance partially covering works already placed to]

D

:
3

) are entering the team. For the

moment it is assumed that since the process has been launched to execution and until it is accomplished the contingent
of functional components is fixed.

3. Agents' load evaluation. Evaluation of agents'
activity related to process D3 - refer to diagram on Fig. 12. -

shows that average agents' load is 37.5%.

4. Planning by simulation. One of the accessory
results which may be automatically obtained from Planning
Process simulation is the draft of proposal preparation plan
(see Fig. 13.).

5. Communication acts as work sequences.
Communication acts among the agents performing the
process are modelled as sequences of certain works
performed at different time points. In our case the execution

of work �Z is formally classified (see Section 1.) as

multicasting undetermined request �Z to DBA, PROG and
LIA with further results analyses by PM (Fig. 14a). Our case
study, however, shows that it is reasonable to perform the

works �Z and �Z in reversed order to avoid the necessity to
synchronise the influence with corresponding reaction(s). As

'%$4 0 0 0 0 0 -3 0 0 0 DBA 0 0 0 0 1 0 1 0 0

352*4 0 0 0 0 0 0 -3 0 0 PROG 0 0 0 0 1 1 0 0 0

 :D 304 -1 -2 -2 -2 0 0 0 0 … 0 PM 0 0 0 0 0 0 0 0 … 0

'2&4 0 0 0 0 0 0 0 -3 0 DOC 0 0 0 0 0 0 0 0 0

7674 0 0 0 0 0 0 0 0 0 TST 0 0 0 0 0 0 0 0 0

/,$4 0 0 0 0 -3 0 0 0 -3 LIA 0 0 0 0 0 1 1 0 0

System state (related to D:) at WW '�� . Inexecutable works (related to D:) at WW '�� .

�Z �Z �Z �Z �Z �Z �Z �Z ��Z

D' = 2 1 1 1 0 0 0 0 0

Work delays

Fig. 11. System state, inexecutable works and work delays (related to D:) after process D:

 has been accomplished.

3

]

D

:

D
B

A

P
R

O
G

P
M

D
O

C

T
ST L
IA

W'

2

4

- idle: ��@�>�PLQ
�@�>
�:�

�: MLD
M D

ML

- totally in D3

3

1

0

Fig. 12. Agents activity within
D

3 .

it is shown on Fig. 14b these works are performed, say
informally, in "inverse polish" order. Another thing to be
mentioned is the mechanism of setting up appropriate
delays for the elements of the work 'stack'. In our case the
framework uses incoming parameters verification routine

;) for delaying the execution of work �Z . It will not be

performed until valid values of
/,$352*'%$ <<< ���

a
�

a
�

a
 are

provided - i.e. until DBA, PROG and LIA complete the

execution of work �Z multicasted by PM within the time

interval WW '�� (see Fig. 14b). In case the works do not
have parameter relationship the framework provides
alternative mechanism for ordering the sequence - agent's
state constraints (see Fig. 14.). The process of changing the
state is the application of some constraints having definite
lifetime and looking as follows:

°
¯

°
®

...

LifeTimeReject' intAddConstra

...

��
� �� ZV (7)

in case multicasting of �Z was a communicative act of directive type.

6. FIPA compliance. The work sequence model presented on Fig. 14. is notably similar to FIPA Contract Net
Protocol [7]. The conjectures are that 1-st - we may possibly model FIPA ACL communicative acts by means of
presented framework and 2-nd - we may possibly use ACL as the transport language for inter - agent communication

within the communities modelled in frame of the proposed
approach.

7. Manual preparation work. Even this simple case
shows that in practice we need to apply lots of inhouse
work before the functional system is ready to operation.
Macromodels, ontologies, state constraints, parameters',
results' and role descriptions are to be prepared manually
and stored into the agent/community knowledge base. The
positive thing is anyway that the major part of this work is
performed once and the result may be re-used by another
agents/communities (performing different tasks). Another
thing to be mentioned is that not all of the atomic works
may be executed automatically by the macromodel
program. The agents are used as personal assistants
providing substantial aid to the execution of the routine part
of work. Execution of work �Z , for instance, assumes the

participation of a human 'master' with his creative mind for
at least the informal part of the plan preparation work.

4. Conclusions and Future Work
The theoretical framework [4] for modelling the processes
of information interchange among the members of task-
oriented evolving agent communities has been applied to
modelling of one of the practically important types of
business processes - a Planning Process. The case study of

modelling the process of IS development proposal preparation planning has shown that the approach may be applied to
modelling business processes as tasks presented by sets of atomic works. Case study analysis has provided some results
valuable both from application and theoretical generalisation points of view. The operational model provides good
opportunities for further fine-tuning of community members behaviour (ontologies, state constraints and macromodel
programs) based on the utilisation of the results obtained while modelling of one or another task execution process. The
framework as well provides visible possibilities to model known communication protocols and communicative acts
(contract net, negotiation, ...) by means of appropriately configured work sequences.

The plans for further research and development are as follows:

 Task/Work t1 t2 t3 t4

Tasks Specification PM

REQ Analyses Planning LIA

DB Schemata Design Planning DBA

Software Model Design Planning PROG

Programming Planning PROG

Customers' Training Planning LIA

REQ Analyses Plan Optimisation PM

Software Modelling Plan Optimisation PM

DB Schemata Design Plan Optimisation PM

Project Plan Assembly PM

 Fig. 13. Automatically generated plan of
 modelled Proposal Preparation process.

Fig. 14. Modelling of undetermined request
 with results analysis.

 t1 t2

�Z

DBA

PROG

LIA

PM PM

Analyse

'%$
<�
a

352*
<�
a

/,$
<�
a

�Z

�V

�V

�V

�V

Analyse

DBA

PROG

LIA

PM �Z�Z

a) communication act diagram

b) corresponding work sequence model

More case studies. The case study presented is just one practically important case of the framework approbation.
More cases for various types of business processes (supply chain, auctions) are planned to 1-st - verify framework
applicability and to 2-nd to possibly enhance the models if the necessity arises.

Architectural framework. The layered architectural framework utilising the theoretical models of [4] is under
development and will soon be deployed. The layers of the agents community architecture will comprise: generic agent
architecture, agent-to-agent interface specification, communicative acts specification, task-oriented agents community
specification comprising agents specialisation and feedback co-ordination method, ontology representation, knowledge
sharing and interoperability issues.

Implementation. The final goal is to implement Agent-Based IS for Managing Business Processes for a
University/Enterprise Department. One of the strong candidates we are considering now is Zaporozhye State University
Publishing Department.

References
1. N. R. Jennings, P. Faratin, M. J. Johnson, P. O'Brien, M. E. Wiegand: "Using Intelligent Agents to Manage Business Processes", Proc. First Int.

Conf. on The Practical Application of Intelligent Agents and Multi-Agent Technology (PAAM96),pp. 345-360. London, UK.
2. Ouksel, A. M.: "A Framework for a Scalable Agent Architecture of Cooperating Heterogenious Knowledge Sources" in Intelligent information

Agents: Agent-Based Information Discovery and Management on the Internet, ed. M. Klusch, Springer, 1999, pp. 100-122.
3. K. Sycara: "In-Context Information Management through Adaptive Collaboration of Intelligent Agents" in Intelligent information Agents: Agent-

Based Information Discovery and Management on the Internet, ed. M. Klusch, Springer, 1999, pp. 78-99.
4. S. U. Borue, V. A. Ermolayev, V. A. Tolok: Diakoptical Approach to Modelling of Processes In Multi-Functional Information Systems.//

"Artificial Intelligence" - a theoretical journal ��� ����� ISSN 1561-5359, spec. issue: Proceedings of International Conference "Knowledge-
Dialog-Solution" - KDS'99. Katciveli, 13-18.1999, pp.211-219 (in russian)

5. Kron, G., Diacoptics. Macdonald, London, 1963
6. ;mlujbg� I� :., ;hjx� K� X� Dhfie_dk ijh]jZff fZdjhfh^_ebjh\Zgby kbkl_f� K[� Fh^_ebjh\Zgb_ kbeh\uo _glbevguo

ij_h[jZah\Zl_e_c., Db_\ BW>� ����� k� �����
7. Foundation for Intelligent Physical Agents (FIPA) Spec: DRAFT, Version 0.2, Agent Communication Language, 1999, http://www.fipa/org
8. Finin, T. and Fritszon, R. KQML - A language for protocol and information exchange, Proc 13th DAI workshop, pp 127-136, Seattle, WA, USA.
9. Rao, A. S. and Georgeff, M. P. BDI agents - from theory to practice, Proc. of the 1st Intl. Conf. on Multi-agent Systems, San Francisco, 1995.
10. Jennings, N. R., Sycara, K., Wooldridge, M., A Roadmap for Agent Research and Development, Aunonomous and Multi-Agent Systems, 1, 1998,

pp. 7-38.

