
 1

Вісник Харківського національного університету
Серія «Математичне моделювання. Інформаційні технології. Автоматизовані системи

управління»
УДК 519.6 № , 2004, с.

Semantically Reinforced Web Services for Wrapping Autonomous

Information Resources
Vadim Ermolayev, Natalya Keberle, Vladimir Shapar, Vladimir Vladimirov

Intelligent Systems Research Group,
Dept. of Information Technologies, Zaporozhye State Univ.,

66, Zhukovskogo st., 69063, Zaporozhye, Ukraine
{eva, kenga, wws, vvlad}@zsu.zp.ua

Abstract: The paper presents the use of semantically enhanced web services in the
field of distributed intelligent information retrieval. The main idea of the approach is
that a web service is used as an intelligent wrapper for an information resource (IR).
These autonomous IRs become available for querying within distributed information
system with centralized mediator through IR registration. IR wrapper web services
provide homogeneous semantically reinforced query interface for the mediator trough
the use of machine-processable ontologies. The paper reports on the architectures of
the mediator systems in two projects that exploit IR wrapper web service approach.
The architecture of the IR wrapper web service, the generic wrapper and its bindings is
then presented. The technique is evaluated by experiments with implemented tester for
the web service which wraps “University Entrant” IR of Zaporozhye State University.

1. Introduction
The importance of adding semantics to web service descriptions is becoming

widely acknowledged. Reinforcing current industry standards for web service
discovery and description, like UDDI and WSDL, with properly aligned and machine-
processable specifications of web service semantics in the form of ontologies is one of
the key targets of Semantic Web enabled Web Services research community. “Clarity
in semantics together with a rich formalization are especially important for ontologies
describing web services because they enable complex tasks involving multiply agents”
(cf. [17]). As outlined also in [21], [8] reasonably formal ontological descriptions of
web services may become a catalyst for automated web service discovery,
composition, and orchestration on the Semantic Web.

The paper presents the use of web services reinforced with ontologies in the field
of distributed intelligent information retrieval (I2R). This research is run in frame of
the RACING1 and UnIT-Net2 projects. Both projects aim to implement intelligent
mediator systems for querying distributed heterogeneous and disparately structured
information resources (IRs) in the terms of a domain ontology which is also the
common mediator ontology. The main idea of the approach is that a web service is
used as an intelligent wrapper for such an IR and provides homogeneous semantically
reinforced query interface for the mediator. The only function of such a web service is

1 RACING: Rational Agent Coalitions for Intelligent Mediation of Information Retrieval on the Net.

Project funded by Ukrainian Ministry of Education and Science. http://www.zsu.zp.ua/racing/
2 UnIT-Net: IT in University Management Network. TEMPUS/TACIS project MP-JEP-2010-2003.

http://www.unit-net.org.ua/

http://www.zsu.zp.ua/racing/
http://www.unit-net.org.ua/

2 Vadim Ermolayev, Natalya Keberle, Vladimir Shapar, Vladimir Vladimirov

to translate and to perform queries to the wrapped IR. Hence, it is considered that
instead of registering a web service it is more reasonable to semi-automatically
register the wrapped IR by aligning, mapping and merging its information resource
ontology (IRO) to the mediator domain ontology (MDO). The mappings are collected
at the mediator side in IR – domain mapping ontology (IRDMO). IRDMO is further
used by the mediator for automatic extraction of sub-queries (to specific registered
IRs), for the translation of a user query to the terms of respective IROs, and for finding
out which wrapper web service is capable to perform the sub-query. The discovery of
a web service to perform the sub-query is more straightforward in UnIT-Net IEDI –
IRDMO stores the URIs of the wrappers for the registered IRs and sub-queries are
generated for all IRs possessing relevant semantic capabilities. More sophisticated
technique is used in RACING. RACING wrapper web services are the capabilities of
resource wrapping agents (RWA). The decision on which IRs to query by a specific
sub-query is taken as the result of negotiation among the query planning agent (QPA)
and the RWAs with similar semantic capabilities.

The paper focuses on the web service implementation of the wrapper side of the
mentioned mediator systems leaving the solutions of the mediator side problems for
other publications (e.g., [10]). The reminder of the paper is structured as follows.
Section 2 surveys the related work in the field of distributed I2R and semantically
enhanced web services. Section 3 sketches out the architectures of RACING and
UnIT-Net IEDI mediator-wrapper systems. Section 4 provides more details on the
architectural solutions for web services wrapping IRs. Section 5 reports on the proof-
of-concept web service wrapper implementation. Section 6 gives conclusions and
outlines the future work.

2 Related Work
Examples of projects developing formal, algorithmic, architectural frameworks,

deploying software prototypes for distributed I2R reinforced with the use of
ontologies are BUSTER [22], DOME [4], InfoSleuth [2], KRAFT [13], MOMIS [3],
OBSERVER [16], Ontobroker [5], PICSEL [15], SIMS [1], TSIMMIS [12]. Although
all these projects use different techniques, approaches, and software paradigms they
identify similar pitfalls for the domain. The first group of possible pitfalls is the way in
which semantic heterogeneity is resolved in the processes of ontology-based
information retrieval. As outlined in [4], this includes the aspects of developing
ontologies (bottom-up and top-down approaches), mapping between ontologies, and
relationships between ontologies and IRs.

Most projects adopt one of the following approaches to using ontologies [23]:
single ontology (SIMS), multiple ontology (OBSERVER), hybrid approach
(BUSTER, DOME). Mapping between ontologies is necessary when a system uses
several ontologies either “horizontally” (as in multiple ontologies approach) or
“vertically” (as in hybrid approach). Mappings between ontologies within the system
provide links between equivalent or related elements of ontologies, thus ensuring
ontology re-use. Mappings between ontologies and IR schemas maintain
correspondences between ontology elements and the elements of IR data schemas. As
stated in [4], the reasons for these mappings are: data schema definitions are not
always a good source of domain knowledge for people querying the system, they often
play technical role; queries posed to the system are expressed in the ontology-oriented

Semantically Reinforced Web Services for Wrapping Autonomous Information Resources S 3

query language, but not in the terms of data schemas – mapping between ontology
elements and data schema elements makes for transparent execution of user queries
within the system; the requirements of information resource autonomy and openness
of the system as a whole.

The second group of possible pitfalls concerns the aspects of supplying autonomy
and dynamic nature of the IRs in an open system. The solutions here advocate one of
the types of mediator architectures: centralized and decentralized. A centralized
mediator architecture provides for one centre (e.g., TSIMMIS), which stores all the
information about ontologies, IRs, mappings between them, and controls the query
formulation and execution. A decentralized mediator architecture provides a separate
agent/wrapper for each IR, which stores mappings between global/shared ontology(-
ies) and the underlying IR. This approach is used in RACING [7]. In other projects
(e.g., InfoSleuth, SIMS, KRAFT) the resource broker communicates with resource
agents/wrappers and determines relevant and accessible resources for every query.

The third group of possible pitfalls is formed by the tasks of query formulation,
effective query decomposition without loss of information and query results merging
and refinement. Known approaches to solving these tasks are: use ontologies
(hypernymy/hyponymy [16] and meronymy [7] relationships) to reformulate queries
containing terms which do not exist in the ontology(-ies) thus constructing query plans
with no loss of information; use rewriting techniques together with mappings to
produce queries on IRs that most effectively satisfy the input query [15].

Another aspect to be analyzed in relevant research approaches is the use of web
services as the interface to IRs. Although some authors claim web services to be
appealing technology for the task (e.g. [6]) it is hard to find published research
implementations of web service based approaches in distributed I2R, especially for
intelligent wrapping of disparate IRs. The projects mentioned above use either agent
communication facilities or CORBA as mediator-wrapper interfaces. A possible
reason for that is that web services still lack means for appropriate formal
specification of the semantics of themselves and the wrapped IR. The means
improving semantic representation of web services are recently under intensive
research. The few topical examples are OWL-S [19], Web Service Modeling Ontology
(WSMO) [24].

The concept and the architectures of RACING and UnIT-Net IEDI use some
novelties which, in their combination, distinguish them from their predecessors.
Ontologies are specified in W3C emerging de facto standard language OWL DL [18].
Ontology-driven query formulation and transformation [7] is used for query
processing at the mediator side. Mediator query language is RDQL [20]. At the
wrapper side the semantics of a structured IR (e.g., RDB) is formalized by means of a
semi-structured Ontology Specification Language (OWL DL). Web Service
technology is used for IR wrappers implementation. Web service registration is
substituted by the wrapped IR registration which provides more powerful means to
discover an appropriate web service for querying.

4 Vadim Ermolayev, Natalya Keberle, Vladimir Shapar, Vladimir Vladimirov

Query Formulation
Server

Sub-Query
Extraction Server

Sub-Query
Execution

Server

Results
Mark-Up

Translation
Server

IRKB

AUPO

MDO

IRDMO

MKB

IR Wrapper Web
Service

IR
Wrapper

IRO

IR

IR Wrapper Web
Service

IR
Wrapper

IRO

IR

…

AU Request
to formulate

a query
Q-ry Results
in terms
of MDO

IE
DI

 M
ed

iat
or

a) UnIT-Net IEDI

RA
CI

NG
 M

ed
iat

or

IR Wrapper Web
Service

IR
Wrapper

IRO

Fig. 1. UnIT-Net IEDI and RACING reference architectures.

b) RACING
IR

RWA

QTA

UA Query Formulation

AU

Query Transformation

Query Decomposition

Negotiation with RWAs

OA

QPA

… IR Wrapper Web
Service

IR
Wrapper

IRO

Sub-Query Execution

RWA

IR

MKB

IRDMO

MDO

AUPO

3 UnIT-Net IEDI and RACING Architectures
Both UnIT-Net IEDI and RACING are distributed software systems for I2R. The

type of their architectures is mediator-wrapper with centralized mediator and hybrid
ontology utilization. The fact which is centric to the topic of the paper is that both
systems use semantically enabled web services as IR Wrappers for query processing
(Section 4).

The architectures of UnIT-Net IEDI and RACING mediators are outlined in Fig. 1.
Both of them are based on the following procedure for the ontology-driven query
processing. A human user, who is authorized to pose queries to a system (AU), uses
query formulation tool [7] to specify a query in terms of MDO. AU Profile Ontology
(AUPO) is used to adjust his or her terminological preferences to the terms of MDO as
described in [7]. Query Formulation Server provides for this functionality in IEDI. In
case of RACING this task is guided by User Agent (UA) and by Query
Transformation Agent (QTA). The output of this initial activity is the RDQL query in
terms of MDO.

At the next step the query is automatically decomposed into RDQL sub-queries –
one per relevant IR or IR group with similar IROs. In IEDI this activity is performed
by Sub-Query Extraction Server. In RACING – it is the first phase of query planning
by QPA. Both systems use sub-query extraction algorithm based on late binding
technique and IRDMO usage as described in [10].

At next it is determined which IR wrappers will be involved in the processing of
the cluster of generated sub-queries. In IEDI the solution is determined by the sub-
query extraction. The wrapper web service of each registered IR, for which a non-

Semantically Reinforced Web Services for Wrapping Autonomous Information Resources S 5

Fig. 2. Generic Wrapper Server architecture.

RWWS Server (Tomcat)
Java Virtual Machine

IR Server

RWWS Request
(SOAP)

WKB

IRO

 WS Port

Apache SOAP:
Process WS

/ l

Apache WS
Deployment Tool

Wr s apper Java Clas
Library

RWWS:

RWWS:

Local
Registry

 JDBC

JDBC

rapper IR W
Re

su
lts

(IR

O)

Https

Re
su

lts

(S
OA

P)

empty sub-query was generated, will receive the sub-query for execution. In RACING
the activity involves intermediate negotiation phase. QPA as the initiator of this
negotiation first consults with RACING Matchmaker Agent (MA) to determine the list
of negotiation participants – RWAs who are capable to perform the sub-query
according to the IROs of their IRs. At next QPA conducts Contract Net negotiation on
sub-query performance web service provision with these RWAs [8] and determines
the contractor RWA. The negotiation set includes time, price and quality of service
conditions of sub-query performance. Contractor RWA supplies QPA with the URI of
the requested web service for sub-query performance.

After the sub-queries are performed the results in terms of IR IROs are translated
into the terms of the MDO and delivered to AU.

One more difference between IEDI and RACING architectures is in the way of
ontology provision. Both systems use IR registration for incremental MDO and
IRDMO construction. In both systems the process of aligning and merging the IRO of
an IR under registration to MDO is performed by two ontology engineers with the
help of the Ontology Negotiation Tool (under development in UnIT-Net) which is the
kind of an enhanced ontology editor. However, Mediator Knowledge Base (MKB) in
RACING is managed by the Ontology Agent (OA) which provides other agents with
the portions of the ontologies on their requests. In IEDI the access of mediator servers
to MKB is performed through Jena API [14].

4 Web Services for IR Wrapping
As it was outlined before the task of an IR Wrapper Web Service (RWWS) is to

perform RDQL queries received from the Mediator. RWWS, together with its sub-
ordinate functional components, are implemented as Java classes compiled to byte
code and are executed by JVM of the RWWS Server. Tomcat servlet container3 is
chosen as the RWWS Server for IEDI and RACING prototype implementation. The
architecture of the generic RWWS Server and the process of RWWS execution are
presented in Fig. 2.

3 http://jakarta.apache.org/tomcat/index.html

http://jakarta.apache.org/tomcat/index.html

6 Vadim Ermolayev, Natalya Keberle, Vladimir Shapar, Vladimir Vladimirov

Before an RWWS could be executed by JVM it should be deployed by Apache
SOAP Web Service4 Deployment Tool. The deployment results in placing the code of
the RWWS class(es) compiled to byte code to the Wrapper Java Class Library and in
RWWS registration at the local Apache web service registry.

The requests to perform a WS are conveyed by means of the secured protocol
([11], Section 8). When a SOAP request to perform an RWWS comes to the RWWS
port of the server it is processed by the Apache SOAP processing service. SOAP
processing service extracts RWWS invocation data from the SOAP envelope, checks
if the requested service is available at the local registry and invokes the execution of
the RWWS at the JVM. The components of the RWWS are the ones of the IR
Wrapper (Section 4.1). IR Wrapper components use Jena API to interact with the IR
Wrapper Knowledge Base (WKB) through JDBC. They interact with the IR by means
of JDBC.

4.1 IR Wrappers
The function of an IR Wrapper in IEDI and RACING is to provide uniform access

to registered IRs. The wrappers for the specific IRs are designed and deployed
according to the architectural pattern provided by the Generic IR Wrapper
Architecture Specification ([11], Section 4.4.1).

4.1.1 A Generic IR Wrapper and IR Wrapper Binding
Generic IR Wrapper is the architectural abstraction and the software pattern for

constructing and deploying IR Wrappers in the process of the preparation to IR
registration ([11], Section 2.3). Its main function is to provide the implementation
framework for the uniform access to respective IR. The implementation of this
function comprises:
− Provision of the IRO (coded in OWL) describing the semantics of the resource and

terminological mapping from IR Schema to IRO. IRO constitutes Wrapper
Knowledge Base (WKB)

− Provision of the web service as the interface to query the IR by IEDI Mediator
− Provision of the terminology translation component. RDQL query in terms of the

IRO should be translated to the RDQL query in terms of the IR schema (if there is
the schema: for example, the IR is the relational data base)

− Provision of the query language translation component. An RDQL query should be
translated to the Query Language of the IR (IRQL)

− Provision of the component which will actually order the execution of IRQL
queries through JDBC interface to the IR Server

− Provision of the component which will mark-up the result of the query in the terms
of the IRO
IEDI Generic Wrapper architecture is shown on Fig. 3. It comprises both IR

invariant (web service, terminology translation, query result mark-up) and IR specific
(WKB, language translation, query execution) components. IR specific components
are further on referred to as IR Wrapper Binding. IEDI Generic Wrapper
implementation thus provides the skeleton for the specific IR Wrapper
implementation. The implementation of IR Wrapper Binding finalizes IR Wrapper
deployment. One of the tasks of UnIT-Net project is to collect and to maintain the

4 http://ws.apache.org/soap/features.html

http://ws.apache.org/soap/features.html

Semantically Reinforced Web Services for Wrapping Autonomous Information Resources S 7

IR Wrapper
Translate Terminology

(IRO – IR Schema)

Translate Query Notation
(RDQL-IRQL)

Mark-Up Query Result
(in terms of IRO)

Query:
RDQL in terms of IRO

WKB

IRO

Perform IR Query

Query Results (Plain Text)
Query (IRQL) IR Server

Qu
er

y R
es

ul
ts

 (M
ar

ke
d-

up
 w

ith
 IR

O)

Fig. 3. Generic IR Wrapper architecture.

library of IR Wrapper Bindings for different types of IRs on the principles of Open
Source licensing.

4.2 Query Translation Component for MS SQL Server IR Wrapper Binding
A specific IR Wrapper Binding for the IR of Zaporozhye State University

containing university entrant information in the Relational Data Base managed by MS
SQL Server has been developed in frame of UnIT-Net project. Its query language
translation component is implemented according to the following algorithm.

Input: RDQL Query in the terms of University Entrant DB Schema
Output: SQL Query
Pre-conditions: ---
Post-effects: ---
Function: the algorithm performs the translation of the input query to the output

query.
1. Form SELECT clause of the output query:

For each variable name in the SELECT clause of the input query replace variable
names by corresponding slot names taken from WHERE clause of the input query.

2. Form FROM clause of the SQL query:
Add all table names used in QUERY (SELECT and WHERE clauses) to FROM
clause.

3. Form WHERE clause of the SQL query:
For each triple in the triple list section of RDQL WHERE clause

(<?x, TableName.FieldName, ?y>) of the input query
 If ?y is found in the AND section of RDQL WHERE clause
 For each entry of ?y (?y <OP> <value>)
 in the AND section of RDQL WHERE clause
 Add (TableName.FieldName <OP> <value>)
 together with the corresponding logical connective
 (AND or OR) to the WHERE clause

8 Vadim Ermolayev, Natalya Keberle, Vladimir Shapar, Vladimir Vladimirov

 of the output query.
 Remove the used entry of ?y (?y <OP> <value>)
 together with the corresponding logical connective
 from the AND section of the RDQL WHERE clause.
 End For
 End If
 Remove the processed triple from the triple list section
 of the RDQL WHERE clause of the input query
End For

4. Form WHERE clause of the SQL query:
For each pair of table names from the SQL SELECT clause

 If the pair appears as the PrimaryTable – ForeignTable pair
 in the IRO Relationships Section
 Add corresponding Expression
 from IRO Relationships Section
 to the SQL WHERE clause
 (connect with AND logical connective)
 End If
End For

5. Clean-up:
Remove USING clause of input query.

5 Proof-of-Concept Implementation
A proof-of-concept tester application has been developed to perform evaluation

experiments with MS SQL DB RWWS. “University Entrant” database server of
Zaporozhye State University was used as the IR for our experiments. The tester has
been designed as a lightweight CGI client for a web browser. Its appearance is
presented on Fig. 4. Tester application allows to input RDQL queries. It than either
translates the input query if #SQLONLY operator is found in the input stream, or
translates, performs the query and marks-up the result in terms of the IRO otherwise.

A simplified “University Entrant” IRO was designed for evaluation purposes. Its
graphical representation is given on Fig. 5. It was assumed in the evaluation
experiments that a user is responsible to formulate and to input RDQL queries in terms
of this IRO. However, like having a recipe doesn’t yet grant having a meal, having a
deployed RWWS doesn’t yet ensure that it reasonably correctly performs an arbitrary
input query. In our context it was necessary to evaluate if the wrapper web service
correctly translates and performs both “good” and “bad” queries – i.e. it is save with
respect to the incorrect or partially correct input. By a “good” query we understood an
RDQL query in terms of the given IRO which corresponds to the connected Concept
Graph (CG). The following Query (a) is a “good” query:

Query (a).
In Natural language:
Return records of all University entrants who have got the maximal grade (9.0)
at the entrance examination in Mathematics. Display: surname, name, patronymic.
RDQL:
SELECT ?surname, ?secondName, ?aboName
WHERE (?x, abo:aboName, ?aboName),

Semantically Reinforced Web Services for Wrapping Autonomous Information Resources S 9

(?x, abo:secondName, ?secondName), (?x, abo:surname,
?surname),(?a, abo:forProfile, ?x), (?a, abo:passes, ?y),
(?y, abo:EntrantExamName, ?een),
(?y, abo:grade, ?z)
AND (?z eq '9.0')
AND (?een eq 'MATHEMATICS')
USING abo FOR <http://owl.protege.stanford.edu#>
Query CG is given in Fig. 6(a).
Query (b) is an example of a “bad” query because the corresponding CG is disjoint

– please refer to Fig. 6(b).
Query (b).
In natural language:
Return all names of the subjects for which the results of School Certification
Examinations are accounted for the enrolment decision5 with respect to the
entrants to Computer Science. Display Speciality Name, Certification Exam Name.
RDQL:
SELECT ?specName, ?sen
WHERE (?q, stud:CertExamName, ?sen),
(?s, stud:SpecialityName, ?specName)
AND (?specName eq 'COMPUTER SCIENCE')

Fig. 4. RWWS tester implementation.

Displayed are the results of RDQL-SQL query translation.

Output SQL
Query

Input RDQL
Query

5 According to Ukrainian National rules for University Entrance procedure the average result of School

Certification Exams on several characteristic subjects is used as extra examination mark of a University
entrant and, thus, are used to make proper enrolment decision. For example, characteristic subjects for
Computer Science entrants are Algebra, Geometry, Informatics, and Physics.

http://owl.protege.stanford.edu/

10 Vadim Ermolayev, Natalya Keberle, Vladimir Shapar, Vladimir Vladimirov

USING stud FOR <http://owl.protege.stanford.edu#>
This query is “bad” because it doesn’t specify the relationship between

CertificationExam and Speciality concepts of our IRO. However, IRO provides such a
relationship by means of hasMarks and aboSpec slots (see Fig. 5). It is therefore
possible to make this “bad” query a “good” one by the following reformulation (Query
(c)).

Query (c).
In natural language:

Profile

surname

secondName

aboName

gender
hasMarks

city
aboSpec

ProfilesAbo

forProfile

passes

EntrantExam CertificationExam

entrantExamName certExamName

specialityName

grade

Legend:
- rdfs#domain relationship
- rdfs#range relationship
- concept
- concept property
- slot Fig. 5. Simplified IRO for University Entrant IR.

Speciality

Return all names of the subjects for which the results of School Certification Examinations
obtained by the registered University Computer Science entrants are accounted for the
enrolment decision with respect to the entrants to Computer Science. Display Speciality
Name, Certification Exam Name.
RDQL:
SELECT ?specName, ?cen
WHERE (?x, abo:hasMarks,?q),(?q, abo:SertExamName,
?cen),(?x, abo:aboSpec, ?s), (?s, abo:SpecialityName,
?specName)
AND (?specName eq 'COMPUTER SCIENCE')
USING abo FOR <http://owl.protege.stanford.edu#>
The experiments showed that our RWWS has done well both for “good” and “bad”

queries. For our example queries the results of query translation from RDQL to SQL
are as follows.

Query (a) - SQL:
SELECT Profiles.surname, Profiles.second_name, Profiles.name
FROM Profiles, Profilesabo, List_OExam_dic, EntrantExam
WHERE (EntrantExam.grade='9.0')
AND (List_OExam_dic.list_oexam='MATHEMATICS')
AND ProfilesAbo.profiles=Profiles.code AND
EntrantExam.profilesabo=ProfilesAbo.code AND
EntrantExam.oexam=List_Oexam_dic.code

http://owl.protege.stanford.edu/
http://owl.protege.stanford.edu/

Semantically Reinforced Web Services for Wrapping Autonomous Information Resources S 11

Profile

surname

secondName

aboName
ProfilesAbo

forProfile

passes

EntrantExam

entrantExamName

grade

(a) CG for Query (a) – a “good”
query

CertificationExam

certExamName

Speciality

specialityName

(b) CG for Query (b) – a “bad” query

hasMarks aboSpec

ProfilesAbo

CertificationExam

certExamName

Speciality

specialityName

(c) CG for Query (c) – improved (b)

Query (b) - SQL:
SELECT DISTINCT Speciality_dic.speciality,
List_Osert_dic.list_ocert
FROM List_Ocert_dic, Speciality_dic
WHERE (Speciality_dic.speciality='COMPUTER SCIENCE')
The experiments with about 20 different “good” queries showed that the evaluated

RWWS always translated the query adequately and returned expected results. When a
“bad” query was fed to the RWWS it still performed reasonably adequate returning
Cartesian Products of the possible correct responses to respective query CG branches.
For example the response to Query (b) was as follows:

<?xml version="1.0"?>
<SOAP-ENV:Envelope xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:SOAP-
ENC="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Body SOAP-
ENC:encodingStyle="http://schemas.xmlsoap.org/soap/envelope/">
<NS1:RDQLToSQLResponse xmlns:NS1="urn:_wrapperIntf-Iwrapper"><return
xsi:type="xsd:string"><?xml version="1.0" standalone="yes"?><!--
Generated by SMExport --> <DATAPACKET
Version="2.0"><METADATA><FIELDS><FIELD
attrname="SpecialityName" fieldtype="string" WIDTH="80"/><FIELD
attrname="SertExamName" fieldtype="string"
WIDTH="80"/></FIELDS><PARAMS DEFAULT_ORDER="1" PRIMARY_KEY="1"
LCID="1033"/></METADATA><ROWDATA><ROW
SpecialityName="COMPUTER SCIENCE" SertExamName="INFORMATICS"/><ROW
SpecialityName="COMPUTER SCIENCE"
SertExamName="FOREIGN LANGUAGE"/><ROW
SpecialityName="COMPUTER SCIENCE"
SertExamName="HISTORY"/><ROW
SpecialityName="COMPUTER SCIENCE"

Fig. 6. RDQL Query Concept Graphs imposed on the “University Entrant” IRO for
“good” and “bad” queries.

12 Vadim Ermolayev, Natalya Keberle, Vladimir Shapar, Vladimir Vladimirov

SertExamName="ALGEBRA"/><ROW
…
SpecialityName="COMPUTER SCIENCE"
SertExamName="PHYSICAL CULTURE"/><ROW
SpecialityName="COMPUTER SCIENCE"
SertExamName="PHYSICS"/><ROW
DATA></DATAPACKET></return>
</NS1:RDQLToSQLResponse></SOAP-ENV:Body>
</SOAP-ENV:Envelope>

We may observe that:
− It still contains the correct intended response (INFORMATICS, ALGEBRA,

GEOMETRY, PHYSICS)
− But it returns also all other names of Certification Exams for other University

specialities

6. Concluding Remarks
The paper presented the use of RWWS reinforced with ontologies in the field of

distributed intelligent information retrieval (I2R) in frame of the RACING and UnIT-
Net projects. Both projects aim to implement intelligent mediator systems for querying
distributed heterogeneous and disparately structured IRs in the terms of the common
mediator ontology. The main idea of the approach is that a web service is used as an
intelligent wrapper for such an IR and provides homogeneous semantically reinforced
query interface for the mediator. One of the novelties which distinguishes RACING
and UnIT-Net architectures from many other relevant approaches is the use of Web
Service technology for IR wrappers implementation. An RWWS is a very simple web
service from the point of view of the interface and invocation (SOAP). However, the
interior of an RWWS is the ontologically reinforced IR wrapper which provides the
following functional components:
− Terminology translation component: RDQL query in terms of the IRO is translated

to the RDQL query in terms of the IR schema (if there is the schema: for example,
the IR is the relational data base).

− Query language translation component: an RDQL query is translated to the Query
Language of the IR (IRQL), for example to SQL in the Proof-of-Concept
implementation.

− The component which actually orders the execution of IRQL queries through JDBC
interface to the IR Server

− The component which marks-up the result of the query in the terms of the IRO
It was also reported in the paper that the registration of an RWWS is actually

substituted by the registration of the IRO of the wrapped IR to the mediator. It is
stated that such registration procedure facilitates to making the description of an
RWWS more semantically rich and, hence, making the discovery of the necessary
RWWS more simple and precise.

A proof-of-concept tester application has been developed to perform evaluation
experiments with MS SQL DB RWWS. “University Entrant” database server of
Zaporozhye State University was used as the IR in evaluation experiments. The
experiments showed that the RWWS implementation did well both while translating
and performing well formulated (with connected CG) and badly formulated RDQL
queries in terms of the simplified “University Entrant” IRO.

Semantically Reinforced Web Services for Wrapping Autonomous Information Resources S 13

Acknowledgements
The authors would like to express their gratitude to the members of the RACING

and UnIT-Net project consortia for their collaborative help in bringing the reported
results to life.

REFERENCES

1. Arens, Y.; Knoblock, C.A.; Shen, W.: Query Reformulation for Dynamic

Information Integration. J. of Intelligent Information Systems. 1996.
2. Bayardo et al.: InfoSleuth: Semantic Integration of Information in Open and

Dynamic Environment. In Proceedings of the 1997 ACM International Conference
on the Management of Data (SIGMOD), Tucson, Arizona, May 1997.

3. Bergamaschi, S. et al.: An Intelligent Approach to Information Integration. In:
Proc. of Formal Ontology in Information Systems (FOIS-98), June, 1998.

4. Cui, Z.; Jones, D.; O’Brien, P.: Semantic B2B Integration: Issues in Ontology-
based Applications. SIGMOD Record, 31(1), March 2002. 43-48

5. Decker, S. et al.: Ontobroker: Ontology Based Access to Distributed and Semi-
Structured Information. In R. Meersman et al. (eds.): Semantic Issues in
Multimedia Systems. Proceedings of DS-8. Kluwer Academic Publisher, Boston,
1999, 351-369.

6. Demetriou, G. Et al.: A Web Services Architecture for Distributed Cross-
Language Information Retrieval. Submitted to: J. of Natural Language
Engineering, 2003

7. Ermolayev, V., Keberle, N., Plaksin, S., Vladimirov. V.: Capturing Semantics
from Search Phrases: Incremental User Personification and Ontology-Driven
Query Transformation. In: Proc. of the 2-nd Int. Conf. on Information Systems
Technology and its Applications (ISTA'2003), Kharkiv, Ukraine, June 19-21,
2003, 9-20.

8. Ermolayev, V., Keberle, N., Kononenko, O., Plaksin, S., Terziyan, V.: Towards a
framework for agent-enabled semantic web service composition. Int. J. of Web
Services Research, 1(3), 2004, 63-87.

9. Ermolayev, V., Spivakovsky, A., Zholtkevych, G.: UnIT-NET IIDE :
Infrastructure nationale ukrainienne pour l’intraéchange de données électroniques.
Colloque National de la Recherche Universitaire dans les I. U. T. Actes de
Colloque, Tome 1. Sciences et Techniques de l' Ingenieur, Nice, May, 6-7, 2004,
p. 113-121

10. Ermolayev. V., Keberle, N., Shapar, V., Vladimirov, V.: Ontology-Driven Sub-
Query Extraction for Distributed Autonomous Information Resources in UnIT-Net
IEDI. 3-d Intl. Conference on Information Systems Technology and its
Applications (ISTA'2004), Salt Lake City, Utah, USA, July 14-16, 2004 (to
appear).

11. Ermolayev, V., et al.: The Infrastructure for Electronic Data Interchange.
Reference Architecture Specification. Version 1.0. UNIT-NET Deliverable No
D2.2.D.1. URL: http://www.compscipreprints.com/comp/Preprint/eva/20040228/1

12. Garcia-Molino, H. et. al.: The TSIMMIS Approach to Mediation: Data Models
and Languages. In: Proc. Next Generation Information Technologies and Systems
(NGITS), June 1995.

http://www.compscipreprints.com/comp/Preprint/eva/20040228/1

14 Vadim Ermolayev, Natalya Keberle, Vladimir Shapar, Vladimir Vladimirov

13. Gray. P. et al.: KRAFT: Knowledge Fusion From Distributed Databases and
Knowledge Bases. In: Proc. 8th Intl. Workshop on Database and Expert System
Applications (DEXA-97), IEEE Press, 1997, 682-691.

14. Jena – a Semantic Web Framework for Java. URL: http://jena.sourceforge.net/
(last checked: 27.04.2004)

15. Lattes V.; Rousset M.-C.: The Use of CARIN Language and Algorithms for
Information Integration: The PICSEL System. Int J. of Cooperative Information
Systems, 9(4), 2000, 383-401.

16. Mena, E. et al.: OBSERVER: An Approach for Query Processing in Global
Information Systems Based on Interoperation Across Pre-Existing Ontologies.
Distributed and Parallel Databases 8(2), 2000, 223-271

17. Mika, P., Gangemi, A., Oberle, D., Sabou. M.: Foundations for Service
Ontologies: Aligning OWL-S to DOLCE. In: Proc. 13-th Int. World Wide Web
Conf. 2004, New York, NY USA, May 17-22, 2004 (to appear)

18. OWL Web Ontology Language Reference. W3C Proposed Recommendation. 15
December 2003. URL: http://www.w3.org/TR/owl-ref/ (last checked: 27.04.2004)

19. OWL-S: Semantic Mark-up for Web Services. Whitepaper. The OWL Services
Coalition. URL: http://www.daml.org/services/owl-s/1.0/owl-s.pdf (last checked:
27.04.2004)

20. RDQL – A Query Language for RDF. W3C Member Submission, 9 January 2004,
URL: http://www.w3.org/Submission/2004/SUBM-RDQL-20040109/ (last
checked: 27.04.2004)

21. Sivashanmugam, K., Verma, K., Sheth, A. P., Miller, J. A.: Adding Semantics to
Web Services Standards. In: Zhang, L.-J. (Ed.): Proc. Int. Conference on Web
Services, ICWS '03, June 23 - 26, 2003, Las Vegas, Nevada, USA, 395-401

22. Stuckenschmidt H. et al.: Enabling technologies for interoperability. In: Visser,
U., Pundt H. (Eds.): Workshop on the 14th International Symposium of Computer
Science for Environmental Protection, Bonn, Germany, 2000, 35-46.

23. Wache, H. et al.: Ontology-Based Integration of Information - A Survey of
Existing Approaches. In: (A. Gomez-Perez, M. Gruninger, H. Stuckenschmidt, M.
Uschold) Proceedings of the IJCAI-01 Workshop on Ontologies and Information
Sharing, Seattle, USA, August 4-5, 2001, 108-118

24. Web Service Modeling Ontology (WSMO). DERI Working Draft 14 February
2004. URL:http://www.nextwebgeneration.org/projects/wsmo/2004/
d2/v01/20040214

http://jena.sourceforge.net/
http://www.w3.org/TR/owl-ref/
http://www.daml.org/services/owl-s/1.0/owl-s.pdf
http://www.w3.org/Submission/2004/SUBM-RDQL-20040109/
http://www.nextwebgeneration.org/projects/wsmo/2004/�d2/v01/20040214
http://www.nextwebgeneration.org/projects/wsmo/2004/�d2/v01/20040214

