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Abstract: The paper presents time-related part of PSI1 theoretical framework. 
In comparison to other theories of time based on interval logics our approach 
presents the advancement by introducing fuzziness of time intervals as 
transition periods at beginnings and endings. It is argued that, though quite 
simple (discrete, linear, and anisotropic), our theoretical model is expressive 
enough to be used as a logical formalism for reasoning about stochastic, 
unpredictable, weakly defined action and process flows. A metric and a rich set 
of axiomatic relationships among time intervals are introduced for that. Further 
on, a means for modeling and reasoning about singular, repeated, regular events 
and actions having phases and vague durations is elaborated. Presented theory 
of time is used for modeling and reasoning about events, environmental 
influences, happenings, and actions while planning and scheduling in our 
simulations of dynamic engineering design processes.     

1 Introduction 

A major trend in engineering design today is that a design system is flexible and 
responsive enough to be capable of meeting and compensating sudden changes. 
Changing factors may be: time-to-market constraints, design specification. 
Unpredicted distorting external influences like sudden reorganization of a design 
team, increased number of design activity iterations due to the changes in the quality 
requirements, or factual unavailability of a required resource may also influence a 
design system [1]. Another important feature of a design system is the increasing 
geographical and cultural distribution bringing up new challenges to performance 
management. Indeed, provided that the parts of a design system are spread globally, 
the proper time management may substantially increase “round-the-clock” 
performance.   

Time modeling is a crucial feature in a vast variety of application domains dealing 
with change. Probably the first to perceive it was Aristotle [2].  The importance of 
time modeling is shown by the numerous works in the area of temporal databases [3] 
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and temporal reasoning [4]. Our motivation for developing the model of time 
presented in this paper is the observation that accounting for mentioned specificities 
of changes in design processes requires a rich and expressive model of time.  

The rest of the paper is structured as follows. The context and the tasks of PSI 
project are briefly presented in Section 2. The requirements to the model of time are 
devised and outlined based on the tasks of the project. Section 3 presents modeling 
choices based on the requirements. Section 4 describes the basic crisp part of our 
general model of time and time interval calculus. Section 5 introduces fuzziness in the 
beginnings and endings of time intervals providing means for modeling vagueness, 
uncertainty, and subjectivity. The means for reasoning about irregularity, regularity, 
and recurrence of events and actions is introduced in Section 6. Section 7 reviews the 
related work in the field of fuzzy temporal reasoning and compares our results to the 
results found in the literature. Finally concluding remarks and our plans for future 
work are given.    

2 Modeling Requirements  

PSI project aims at developing models, methodologies, and software tools providing 
rigorous engineering treatment of performance and performance management. PSI 
performance modeling and management approach focuses on performance as a pro-
active action. A fine-grained dynamic model of an Engineering Design Process is 
therefore developed. PSI approach considers that performance does not occur in 
vacuum, but is embodied in its environment and is controlled by the associated 
performance management process. 

A Dynamic Engineering Design Process (DEDP) is a goal-directed process of 
transforming the representations of a design artifact in stateful nested environments. 
An environment comprises design artifact representations, resources, tools, and actors 
who perform actions to transform design artifacts using tools, consume resources.  
Actions are admissible in particular environmental states and may be atomic or 
compound, state-transitive or iterative, dependent or independent of other actions. The 
components of an environment may generate internal events or may be influenced by 
external events that are generated outside of this environment at run time. Events may 
have causal dependencies.  A DEDP is considered a problem solving process which 
goals, partial goals, and environments may change dynamically. In PSI a decision 
taking procedure is associated with each state to allow environments adjust the course 
of a DEDP taking these changes into account. Decisions are taken by actors modeled 
by software agents.  

PSI software tools are developed for assisting project managers to make robust 
planning, monitoring, and management of their design projects aiming at reaching 
best possible performance. Grounded decisions in planning are based on the 
knowledgebase of project logs accomplished in the past. These logs provide vast and 
finely grained records of the performance of the accomplished projects and may be 
used for simulating the behavior of the design system in response to different 
influences. At project execution phase PSI software may be used for predicting the 
behavior of the design system in the future based on the record of the partially 



accomplished DEDP, the knowledge about its environment(s), and performance 
simulations. 

Mentioned functionalities may only be implemented if a rich and expressive model 
of time is used. This model should be capable of facilitating agents reasoning about 
environments, events, and actions employed in decision taking procedures enacted at 
environmental states. In particular, PSI bases its model of time on the following 
modeling requirements.  As far as our objective in this development was providing 
the ontology of time for the use in agent-based software tool for DEDP simulation, 
the requirements were graded with respect to the use in the versions of the software as 
shown in Table 1. Minimal ontology of time is used in the current software of PSI 
software prototype. Crisp ontology of time is planned for the upcoming major 
version. Full ontology of time based on the fuzzy extension of the model of time will 
be used in the future versions. More details may be borrowed from [11].   

Table 1. Required features of the model of time. 

Feature Time 
Minimal

Time 
Crisp 

Time 
Fuzzy 

Absolute time points X X X 
Differently structured and grained time stamps: dates, times, time 
zones 

 X X 

Time intervals and their durations x x X 
Time intervals open or closed by beginning and ending instants   X 
Finite and infinite time intervals  x X 
Time intervals with vague beginnings and endings   X 
Means to analyze the overlaps of time intervals  x X 
Subjective treatment of beginnings and endings of actions by 
different actors 

  X 

Sub-intervals of a time interval of an action (phases)  x X 
Regular intervals associated with working days, weekends and 
irregular but repeating intervals like that associated with vacations 

 x X 

Means for modeling and analyzing changing availability, non-
availability, or consumption of resources with extrapolation to the 
future 

 x X 

Means for analyzing actor availability and occupancy in time: Who is 
doing what, when, and what is the capacity spent rated by the overall 
capacity? 

 x X 

Means for modeling and analyzing instant events or events with 
durations 

 x X 

Means for modeling and analyzing causal relationships among events 
in time: influences, pre-conditions, immediate-,  and post-effects 

 x X 

Means for modeling and analyzing subjective perceptions of events: 
happenings 

  X 

Means for modeling and analyzing atomic and compound events 
having different temporal parts with or without causal dependencies  

 x X 

 
Legend: x – partial coverage; X – full coverage dealing with vagueness and subjectivity. 



3 Modeling Choices 

Requirements analysis revealed that a simplified model of time is appropriate for 
simulation purposes in PSI. Time is represented by a single time line – a linear, 
anisotropic, discrete set of time instants as shown in Fig. 1. It is assumed in our model 
of time that the following properties hold. 

 

at Present 

Past Future 

in the Past in the Future 
… … 

Instant Interval 

Duration 

TimeLine 

Present

 
Fig. 1. An outline of the model of time. 

Time is linear. Several branching time models exist. To mention just one of them, 
OMG adopts the model based on several time lines with different clocks and 
synchronization relationships for modeling and analysis of real-time and embedded 
systems [5]. However, for the purposes of PSI linearly anisotropic time model is 
sufficient. By stating that we also assume that there exists a single reference clock and 
all the clocks in a distributed system are synchronized with it, possibly with certain 
shifts representing time zones. By postulating the linearity of time we do not state that 
courses of action are linear. Their execution is deterministically linear in the past and 
at present, but may take alternative paths in the future.  

Time is anisotropic. Indeed, processes are developed from the Past to the Future. If 
we need going back in the process we do not reverse time, but step back the 
subsequence of atomic actions already performed and take a repetition or a different 
process path. These repetitions or alternative paths are actions developed in the same 
temporal direction – from the Past to the Future. Events that have duration are 
developed in the direction from the Past to the Future. Causal relationships among 
Events are directed from the Past to the Future. A derivative of this assumption is that 
anisotropic binary relationships may be set among time instants and time intervals.  

Time is discrete. Discrete model of time is used because its properties are sufficient 
for our simulation purposes. Computer clocks are used to measure the values of time 
points in simulations. These clocks have an upper bound of frequency constrained by 
hardware implementation. Hence, dense time, or continuous time models can not be 
feasibly used. The time line in PSI is used as a basic dimension in our simulation 
experiments, in discrete settings.    

Time intervals are fuzzy. The introduction of fuzzy sets as the models of the 
beginnings and endings of time intervals allows accounting for uncertainty, vagueness 
and subjectivity in our treatment of events, happenings, actions, and their 
dependencies. Further on, fuzzy time intervals may be composed in interval sets 
denoted as periods and may contain sub-intervals denoted as phases.  



4 Crisp Model of Time  

A Time Line is denoted as an abstract axis describing abstract time as an Abelian 
group2 with respect to addition operation ),( +Τ . The elements of a Time Line are time 
instants (or instants in short).  

An instant t is a point in time having no duration. An instant has the value 
reflecting its position on the Time Line. The value of an instant may be: 
− Negative: in this case the instant is said to be in the Past 
− Zero: in this case the instant is at Present and is the Zero of the Time Line 
− Positive: in this case the instant is said to be in the Future 

4.1 Linearity of Time 

Time is assumed to be linear. If put formally the linearity of time means that a total 
order is set among the instants on the Time Line. Given two arbitrary instants t1 and 
t2, one of the following statements holds true: 

Before(t1 , t2) – means that t1 is before t2 (1)
After(t1 , t2) – means that t1 is after t2 (2)

Same(t1 , t2) – means that t2 and t1 are the same instant (3)
The following statements on the relationships among Before, After, and Same hold 

true: 
),(),( 1221 ttAfterttBefore ≡  (4)

),(),(),( 211221 ttSamettBeforettBefore ≡∧  (5)
),(),(),( 211221 ttSamettAfterttAfter ≡∧  (6)

4.2 Time intervals 

A time interval  is a segment of time bounded by an instant at the 
beginning, an instant  at the end, and . The latter 
property hints about the anisotropy of time

],[ eb ttI = bt
et ),(),( ebeb ttSamettBefore ¬∧

3. From a set theoretical perspective a time 
interval may be denoted as an ordered triple containing its beginning instant, the set of 
its inner instants, and its ending instant: 

},,,{ eib tTtI =  (7)
where the order among the constituents is denoted as: 

)),(),(()),(),(( j
e

j
e

j
b

j
bi

j ttSamettAfterttSamettBeforeTt ¬∧∧¬∧∈∀  (8)
The assumption about the discrete character of time allows us to denote a unit time 

interval. A unit time interval is a time interval where . As the },,,{ ei
u

b
u tTtI = ∅=i

uT

                                                           
2 In abstract algebraic sense an Abelian group is a group in which the group operation holds 

commutativity.  
3 Otherwise we should have written . ),( eb ttSame¬



set of its inner instants is empty, it comprises only two instants: the beginning instant 
 and the ending instant , therefore the following holds true: bt et

)),(),(()),(),((: ebeb ttSamettSamettAfterttBeforet ∨→∨∀  (9)
Binary relationships among time intervals are more complex than the ones over 

instants. Following [7], the set of binary relationships among intervals is defined 
below based on the binary relationships of their beginning and ending instants. 
Assume , . Then the following hold true: ],[ 111

eb ttI = ],[ 222
eb ttI =

I1 is (distinctly) before I2: 
),(),(),( 212121 IIBeforettSamettBefore bebe ≡¬∧  (10)

I1 meets I2
4: 

),(),(),( 212121 IIMeetsttSamettBefore bebb ≡∧  (11)
I1 (distinctly) overlaps I2: 

),(),(),(

),(),(),(),(

211212

12122121

IIOverlapsttSamettAfter

ttSamettBeforettSamettBefore
eeee

ebebbbbb

≡¬∧∧

¬∧∧¬∧
 (12)

The relaxations of (12) result in the following: 
I1 contains I2: 

),(),(

),(),(),(

2121

212121

IIContainsttSame

ttAfterttSamettBefore
ee

eebbbb

≡¬∧

∧¬∧
 (13)

I1 starts I2: 
),(),(),(),( 21121221 IIStartsttSamettAfterttSame eeeebb ≡¬∧∧  (14)

I1 finishes I2: 
),(),(),(),( 21212121 IIFinishesttSamettSamettAfter eebbbb ≡∧¬∧  (15)

I1 lies within I2: 
),(),(),(),( 21211221 IIWithinIIFinishesIIContainsIIStarts ≡∨∨  (16)

I1 is the same as I2: 
),(),(),( 212121 IISamettSamettSame eebb ≡∧  (17)

4.3 Infinite Time Intervals 

An extension of the theory of time intervals is the account for their possible infinity at 
the beginning, at the end, or at both ends. We shall say that a time interval 

 is infinite at the beginning iff: },{],[ eie tTtI =−∞=∞

),()(: ji
i

ii
i

j ttBeforeTttTt ∧∈∃∈∀  (18)

We shall say that an interval  is infinite at the end iff: },{],[ ibb TttI =∞=∞

),()(: ji
i

ii
i

j ttAfterTttTt ∧∈∃∈∀  (19)

                                                           
4 Please note that I2 does not meet I1. 



In frame of our understanding of time there exists only one interval 
which is infinite at both ends – the Time Line. For }{],[ iTI =∞−∞=∞∞ ∞∞ I it holds 

true that: 
),(),(),(:, jkji

i
kiki

i
j ttAfterttBeforeTttttTt ∧∧∈∃∈∀  (20)

Please notice that Past and Future on the Time Line (Fig. 1) are the intervals which 
are infinite respectively at the beginning and at the end and bounded by the instant of 
Present at their finite end: 

},{],[};,{],[ ii TPresentPresentFuturePresentTPresentPast =∞==−∞=  (21)
Having defined Past and Future as time intervals and Present as an instant we may 
now reason about several temporal properties of arbitrary time intervals. We may say 
that an interval I continues if it overlaps with the Past: 

)(),( IContinuesPastIOverlaps ≡  (22)
We may say that an interval I ends now (at Present) if it finishes the Past (or meets the 
Future): 

)(),( IEndsPastIFinishes ≡ or )(),( IEndsFutureIMeets ≡  (23)
We may say that an interval is finished if the Past contains it: 

)(),( IIsFinishedIPastContains ≡  (24)
We may say that an interval begins now (at Present) if it starts the Future (or is met by 
the Past): 

)(),( IBeginsFutureIStarts ≡ or )(),( IBeginsIPastMeets ≡  (25)
We may say that an interval has not yet begun if it lies within the Future:  

)(),( InNotYetBeguIFutureContains ≡  (26)

4.4 Metrics of Time 

The following two aspects should be defined for associating meaningful values with 
the constituents of the Time Line: (i) the values of time instants; and (ii) the metric for 
time intervals.  

Having assumed the linearity and the discreteness of Time we may denote the 
values of instants as mappings to integers5. We shall first define the basic mapping 
presuming that Present maps to zero of integers and the instants in the Past and the 
Future map to negative6 and positive integers respectively. We shall then refine this 
mapping by introducing the instant in the Past, being the beginning of measured time. 

Let us associate the value equal to zero with the instant t0 (at Present – refer to 
Figure 1). Then an arbitrary instant tp located in n unit time intervals to the Past of t0, 
will have the value equal to n−  and an arbitrary instant tf located in m unit time 
intervals to the Future of t0, will have the value equal to m . 

                                                           
5 The question about the clock units (nanoseconds, …, centuries) of these integers is 

intentionally left open because it depends on the frequency of the available clock. 
6 Mappings to negative values may be percept as artificial because human calendars and other 

ways of measuring time operate with positive values. However, there are timelines which are 
similar to the one proposed here. For example, a logarithmic timeline starts in the past (at Big 
Bang time) and lasts till Present: http://en.wikipedia.org/wiki/Logarithmic_timeline  

http://en.wikipedia.org/wiki/Logarithmic_timeline


An alternative and, possibly, a more convenient way of defining instant values is to 
shift the zero point from the instant of Present to the instant which is commonly 
recognized as the zero reference point of time. For example, in Christian chronology 
such a point is the instant implicitly associated with the happening7 of the birth of 
Christ. It is topical to notice that year 0 does not exist in the chronology introduced by 
Dionysius Exiguus. Christian Era starts with Anno Domini (A.D.) which is year 1. 
A.D. is preceded by A.C.8 Christian chronology is the most widely accepted time 
measurement system in the World today. We shall therefore align the basic mappings 
of time instant values to integers with it, when convenient. 

Relative and absolute positions of time intervals on the Time Line may be 
measured and compared by referring to their beginning or ending instants. One more 
metric aspect of an interval is its duration. It is straightforward to assume that the 
duration I of a finite time interval  is the quantity of different],[ eb ttI = 9 unit time 

intervals which lie within I in the sense of (16).  It is easy to prove that I  can be 
computed as: 

be ttI −=  (27)

4.5 Structure of Instant Values and Durations: Date and Time 

Several finite time intervals and their durations are used in chronology. These 
intervals are associated with the phenomena occurring in the physical world. The 
following are trivial and very well known facts. They are discussed with a purpose of 
demonstrating the use of our means for modeling repeating and regular events 
(Section 6).  

A year is a period associated with the event of revolution of the Earth around the 
Sun. A month is period which is the phase of a year and has the duration uncertainly 
equal to 1/12-th of the duration of a year. A day is a period associated with the 
revolution of the Earth around its own axis. An hour is the period with duration equal 
to 1/24-th of the duration of a day. A minute is a Period with duration equal to 1/60-th 
of the duration of an hour. A second is a Period with duration equal to 1/60-th of the 
duration of a minute. 

A calendar is eventually a rule system which sets the relationships among the 
durations of a year, a month and a day. It organizes periods within a year using the 
concept of a date. Gregorian calendar, being the actual dating system today, states 
that: a year contains 12 months; a month comprises 28 to 31 days; a year starts on the 
first day of the first month (called January); the total order among the days in a year is 
set by dates – the values associated with days; a date contains the number of a month 
complemented by the number of a day within the month. The number of a year is 
added to a date for setting up the order among the days of different years. The number 
of a year is calculated as a successive number starting from A.D.   

                                                           
7 In our theory of events and happenings [11] a happening is the percept of the event of the 

occurrence of a real world phenomenon by an observer. 
8 Catholic Encyclopedia: http://www.newadvent.org/cathen/03738a.htm
9 In the sense: . ),(),( 2121 IISameIIDifferent ¬≡

http://www.newadvent.org/cathen/03738a.htm


4.6 Shifting Instant Values: Time Zones 

One of the important corollaries of the linearity of Time is that a time instant has one 
and only one value. Indeed, if supposed that it does not hold true, it is impossible to 
set the total order among the instants. An interesting question however is: how to 
reflect the existence of different time zones in such a theory.  

Based on the assumed linearity of time we stand on the assumption that an instant 
measured at different locations corresponding to different time zones has the same 
value. However, a relative shift10 corresponding to the zone of measurement is 
associated with an instant. For example, the instant of the New Year 2007 has the 
only value (the quantity of unit time intervals passed from that instant to Present) 
irrespectively to the location where it has been percept. Time shifts are different at 
different locations.  

5 Fuzzy Extension of the Crisp Model of Time 

In reality time intervals may have fuzzy boundaries because human treatment of them 
is often vague and subjective. For example, when we say “I’ll be back in a second”, it 
normally (among humans) means that: (i) the action of returning back will take us 
quite a short time interval which duration is (desired to be) about one second; (ii) it is 
well possible that after one second passes we are still on our way; (iii) the probability 
of been back is greater than zero after 0.8 second time interval has passed and is 
definitely equal to one after 20 seconds. 

Fuzzy time intervals may help modeling situations alike. We shall use our set 
theoretic definition of a time interval (7, 8) as the basic one and denote a fuzzy time 
interval as a fuzzy set with its membership function over the crisp set of time instants. 
Graphical representation is given in Fig. 2.  

 

… 

Tb 

…

1 

0 

TeTitb 

f(tb)>ts
threshold(ts) 

f(te)>ts

te
 

Fig. 2. A membership function of a fuzzy time interval. 

A fuzzy time interval I in a set theoretical sense is an ordered triple containing the 
fuzzy set of its beginning time instants, the (crisp) set of its inner time instants, and 
the fuzzy set of its ending time instants: 

},,,,{ fTTTI eib=  (28)
where: 

− bT is the fuzzy set of instants which may be the beginning of I. If an instant 
 is the beginning tbb

j Tt ∈ b of I then  ib
j

bb
j

b
j Ttttt ∈→>∀ :

                                                           
10 Introduction of such a shift is natural. For example, a time zone in Italian is “fuso orario”. 



− iT  is the inner set of instants of I (also called the core [12]) 
− is the fuzzy set of instants which may be the ending of I. If an instant  is 

the ending t

eT ee
j Tt ∈

e of I then  ie
j

ee
j

e
j Ttttt ∈→<∀ :

−  is a discrete membership function ]1,0[: →Ζf
 The order among the constituents is denoted similarly to (8): 

)),(),((

)),(),((,,

klkl

kjkj
e

l
i

k
b

j

ttSamettAfter

ttSamettBeforeTtTtTt

¬∧∧

¬∧∈∈∈∀
 (29)

A considerable difficulty in setting up relationships among the elements of fuzzy time 
intervals and fuzzy time intervals as wholes is that their beginning and ending instants 
can not be crisply determined. Therefore we have to denote these relationships having 
in mind that any member of bT may appear to be tb and any member of eT may 
appear to be te. In that sense a fuzzy interval I may be also denoted as  – a 
segment of time bounded by an instant at the beginning, an instant  at the end, 
and . In difference to a crisp interval the beginning and 
ending instants are located using the membership function f. 

],[ eb ttI =
bt et

),(),( ebeb ttSamettBefore ¬∧

5.1 Binary Relationships among Fuzzy Time Intervals 

We shall denote binary relationships (30-39) for fuzzy time intervals using (10-17) as 
the basics. An idea is that for fuzzy intervals their beginnings and ends are not crisp 
instants, but fuzzy sets of instants. Binary relationships among fuzzy intervals are 
more complex than the ones over intervals (10-17). The set of binary relationships 
among fuzzy intervals is defined below. Graphical illustration is given in Fig. 3. 
Assume,  . Then the following hold true: },,,,{ 11111 fTTTI eib= },,,{ 22222 fTTTI eib=

I1 is definitely before I2: 
),(),( 2121 IIBeforeTTBefore be ≡  (30)

I1 is likely before I2: 

),(1)()( 212121 IIreLikelyBefotftfTTt be ≡<+∩∈∀  (31)
I1 likely meets I2: 

),(1)()( 212121 IIsLikelyMeettftfTTt be ≡≥+∩∈∀  (32)
I1 definitely meets I2: 

),(),(),( 211221 IIMeetsTTFinishesTTStarts ibie ≡∨  (33)
I1 overlaps I2: 

),(),(),( 212121 IIOverlapsTTOverlapsTTMeets iiii ≡∨  (34)
The variations of (34) result in the following: 
I1 contains I2: 

),()()),(),(( 21212121 IIContainsffTTSameTTContains iiii ≡>∧∨  (35)
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Fig. 3. Graphical representation of binary relationships among fuzzy time intervals. 

I1 starts I2: 

),(),( 2121 IIStartsTTStarts ii ≡  (36)
I1 finishes I2: 

),(),( 2121 IIFinishesTTFinishes ii ≡  (37)
I1 lies within I2: 

),(),(),(),( 21211221 IIWithinIIFinishesIIContainsIIStarts ≡∨∨  (38)
I1 is the same as I2: 

),(),(),(),( 21212121 IISameTTSameTTSameTTSame eeiibb ≡∧∧  (39)



Please note that in (30) we do not require 21 ff ≡ . Therefore, and may in fact 
appear to be different. One of the interesting facts is that the theory of fuzzy intervals 
(28-39) is the proper extension of the theory of (crisp) intervals (7, 8, 10-17).  

1I 2I

COROLLARY: If the constituents of I,  I1, and I2 comply with the following:  

}{ bb tT = , , , , , ,  
and 

}{ ee tT = }{ 11
bb tT = }{ 11

ee tT = }{ 22
bb tT = }{ 22

ee tT =

121 ≡≡ ff , 
(40)

then formulae (28-39) are logically equivalent to the formulae (7, 8, 10-17). 
OUTLINE OF THE PROOF: We shall prove the statement of the corollary by 

transforming each of (28-39) according to the statement and proving its logical 
equivalence to the corresponding formula from (7, 8, 10-17). For example, to prove 
that (7) ≡ (28) we shall note that if (40) are applied to (28) it is transformed as 
follows: . means 

that and always belong to I. From the other hand, (7) has the equivalent meaning 
– and always belong to I. Hence, formula (28) is logically equivalent to (7) 
under the conditions of (40). Logical equivalence in the rest is proved analogously.  

})1,,,{(})1},{,},{{(}),,,{( eibeibeib tTtItTtIfTTTI =≡=≡= 1≡f
bt et

bt et

Duration of a fuzzy time interval is denoted similarly to that of a crisp interval. 
Duration I of a fuzzy time interval  is the quantity of different unit time 
intervals

],[ eb ttI =
11 which lie within I in the sense of (38). As for crisp intervals, it is easy to 

prove that the duration of a fuzzy interval can be computed as:    
be ttI −=  (41)

5.2 Infinite Fuzzy Time intervals 

An extension of the theory of fuzzy time intervals is the account for their possible 
infinity at the beginning, at the end, or at both ends. We shall say that a fuzzy time 
interval  is infinite at the beginning iff: },,,{ fTTTI eib=∞

),()(:, ji
i

ii
i

j
b ttBeforeTttTtT ∧∈∃∈∀∅=  (42)

We shall say that a fuzzy time interval  is infinite at the end iff: },,,{ fTTTI eib=∞

),()(:, ji
i

ii
i

j
e ttAfterTttTtT ∧∈∃∈∀∅=  (43)

In frame of our model of time there exists only one interval ∞∞ I which is infinite at 
both ends – the Time Line. For ∞∞ I it holds true that: 

),(),(),(:,,, jkji
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kiki
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j
eb ttAfterttBeforeTttttTtTT ∧∧∈∃∈∀∅=∅=  (44)

                                                           
11 Please note that unit time intervals are crisp intervals and their difference is denoted 

as . ),(),( 2121 IISameIIDifferent ¬≡



6 Time Interval Sets: Phases and Periods  

An interval or a fuzzy interval may contain sub-intervals (13, 35). Sub-intervals of an 
interval are often associated with the phases of an event or of a process.  Examples of 
such sub-intervals are: (i) A working week contains a working days sub-interval and a 
weekend. Though it seems to be crisp at a first glance, some people have five working 
days, but the others have six, or prefer to work on Sundays and rest on Mondays. (ii) 
A year contains four seasons. Though one may argue that seasons as the phases of a 
year and time sub-intervals of seasons within the time interval of a year are crisply 
defined by a calendar. However, such a crisp definition is sometimes too rigid. For 
example, if spring is the season when flowers blossom and grass is green, then we can 
not guarantee that flowers and green grass can be found in the Northern Europe on 
March the 1-st. From the other hand, if a calendar winter is warm enough, this may 
well happen in February. More details are given in [11]. (iii) A quarter contains three 
months. This is an example of a crisp interval containing crisp sub-intervals, at least 
in academic, industrial, or business settings. 

A reason to consider smaller interval chunks is that an interval is associated to a 
phenomenon which occurs in real World and characterizes how this phenomenon is 
manifested in time. A phenomenon may manifest itself differently in its different 
phases. Phases have different sub-intervals associated to them. An evident example is: 
we have low temperatures and snow (so far, somewhere) in winters, but 
thunderstorms and high temperatures in summers. One of the examples topical to the 
domain of engineering design is as follows.  

When a designer is assigned to perform a particular design activity he first takes 
his time to prepare himself for it. This preparation phase is called a Ramp-up Phase 
and may be spent to learn: how to use a new version of a design tool; what are the 
specific features of the particular design; which design techniques may be most 
productive in this particular case, etc. Sometimes, when designers follow trial and test 
approach Ramp-up and Execution time sub-intervals of these phases may overlap. 
They of course are better represented by fuzzy intervals than by crisp intervals.  

Assume that is a finite set of fuzzy time sub-intervals of a 
fuzzy time interval I, then  

},...,,...,{ 11 Nii ssssS +=

)),(),((,1,1..1 jiji ssMeetssssLikelyMeetijNi ∨+=−=∀  (45)
and therefore  

),(
1

IsSame
N

i
iU

=

. (46)

Please note that (36, 37) hold true for finite and infinite fuzzy time intervals. 
Periods (π ) are fuzzy time intervals associated with regular or repeating events 

[11]. One may consider finite and infinite sets of periods. A finite set of periods is 
associated with an event having a finite number of repetitions. For example, a 
particular person may have not more than two periods of presidency in many 
countries. On the contrary, the set of year periods is infinite because the Earth will 
hopefully continue its revolutions around the Sun forever.  



Assume },...,,...{ 11 Nii ππππ +=Π  is the finite set of periods with cardinality N12. 
A total order may be set among the periods in the set: 

)),(),((..1,1..1 jiji MeetsBeforeNijNi ππππ ∨+=−=∀  (47)
Let us denote a set of periods infinite at the beginning 

as , a set of periods infinite at the end as , 

a set of periods infinite at both ends as . Then the total ordering 
on these sets may be set as follows: 

},...,,{... 1 nii πππ +
∞ =Π ,...},...{ 11 +

∞ =Π ii πππ

,...},{... 1+
∞∞ =Π ii ππ

:∞∞Π )),(),((: jiji MeetsBeforeji ππππ ∨∃∀  (48)

:∞Π )),(),((:1 jiji MeetsBeforeji ππππ ∨>∃∀  (49)

:  Π∞ )),(),((: jiji MeetsBeforejni ππππ ∨∃<∀  (50)

7 Related Work 

There is a vast amount of published results on representing temporal information in 
many domains and using a broad diversity of general theories of time [13]. However, 
most of them are limited to crisp settings and do not deal with any form of 
imprecisions. Similarly to [14], we take into account such imprecisions as uncertainty, 
vagueness and subjectivity. Research on uncertain temporal knowledge usually 
studies events and associated time intervals with precise boundaries, but state that our 
knowledge about them is uncertain or even unknown. This category of imprecision is 
often modeled using possibility theory [15]. Probabilistic or possibilistic constraints 
on the beginnings and endings of time intervals generalizing Allen’s interval temporal 
algebra are also introduced in [16, 17]. Vagueness, in difference to uncertainty, means 
that it is impossible even to consider that an event or an action may have precise 
beginning or ending time instant – they have their “core” and transition periods at 
their ends. In this settings using probabilistic or possibilistic approaches for reasoning 
about the instant boundaries of an event is irrelevant. They should be substituted by 
time intervals as done in our work similarly to [14, 18, 19]. Speaking about 
subjectivity, most known approaches in temporal reasoning model subjective 
temporal knowledge using probability distributions expressed as fuzzy sets. However, 
that might be appropriate for representing uncertain subjective knowledge, but does 
not cope with representing subjective knowledge of vague transition periods. To the 
best of our knowledge, only two approaches [14, 18] are capable of representing 
subjective temporal knowledge relevantly to the requirements of PSI. The model 
presented in this paper is very close in its spirit to that of [14] and [18]. However, 
there are some differences. Both [14] and [18] use continuous temporal model – we 
use a discrete one. Having in mind that reasoning on fuzzy extension of Allen’s 
temporal logic is an NP-complete problem [17], we may expect that our approach is 
more computationally efficient and still relevant for our project. Our approach, 
similarly to [18], is hybrid in the sense that both use time points and time intervals, 

                                                           
12 N is the number of the repetitions of the phenomenon. 



but [14] bases on time intervals only. We consider that having time instants is 
important because it allows building three nested models (minimal, crisp, and full 
fuzzy) having more expressive ones as proper extensions of less expressive ones. For 
PSI it is valuable because allows increasing model expressiveness in a natural way. In 
difference to [14, 18] the model presented in this paper is more expressive because it 
is capable of representing sets of time intervals. This allows us reasoning about 
singular, repeating, and regular events [11] as well as about iterative actions and their 
dependencies [10].  Finally, the technique we use in implementing our ontology of 
time and integrating it in PSI Suite of Ontologies [8] is similar to that of [14]. 

8 Concluding Remarks 

We believe that enriching such a simplistic model of time as a linear and discrete one 
by fuzziness of time intervals may bring substantial expressivity benefit. Accounting 
for the fuzziness of beginnings, meetings, durations, overlaps, and endings of 
concurrent or sequential actions in time may facilitate making plans and schedules of 
business processes more flexible and better reflecting the reality. Effective reasoning 
on actions in processes may make simulations of these processes more grounded. 
Assessments and predictions of performance based on the results of these simulations 
may therefore give a better match to what happens or may happen in real business 
settings.  

The paper presented a fuzzy extension of a discrete model of time intervals. In its 
crisp part the model follows Allen’s interval temporal calculus [7]. In its fuzzy 
extension our model is close to [14, 18], but extends them by providing means for 
modeling singular, repeating, and regular events [11] as well as about iterative actions 
and their dependencies [10]. These features are very important for our application 
domain. Presented model is implemented in three ontologies having different 
expressive power: Time Minimal, Time Crisp, and Time Full. Time Minimal is 
already the part of the Core of PSI Suite of Ontologies [8] and is used in the current 
version of PSI software prototype. Our plans for future work anticipate gradual 
integration of Time Crisp and Time Full ontologies in software development.        
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