
Automated Instance Migration between Evolving
Ontologies

Vladimir Vladimirov1, Richard Sohnius2, Vadim Ermolayev1, Wolf-Ekkehard Matzke2

1Department of IT,
Zaporozhye National University

Zhukovskogo 66, 69063, Zaporozhye, Ukraine
vvlad@zhu.edu.ua, vadim@ermolayev.com

2Cadence Design Systems, GmbH,
Mozart str., 2, 85622, Feldkirchen, Germany
rsohnius@cadence.com, wolf@cadence.com

Abstract: An ontology, if used for practical purposes like in information systems,
contains its controlled vocabulary (TBox) describing the semantics of the domain
and the set of facts (ABox) about this domain. The elements of the ABox are
ontology instances. If a domain is described by two or more different ontologies or
if ontologies evolve, TBoxes are the first place to analyze the differences.
However, even if the corresponding TBoxes are mapped to each other, ABox
alignment is still required to be done. Though TBoxes may be aligned manually,
the size of the corresponding ABoxes may well be a serious obstacle for feasibly
finishing the job by hand. The paper presents our approach and recent research
accomplishments in developing a methodology for solving this complex task semi-
automatically. We call it Ontology Instance Migration Methodology (OIMM). It
allows reducing the bulk of manual work in aligning one ontology to another one.
Our simplified task is to populate the second one with the instances taken from the
first one. We first build mappings between the TBoxes, then we proceed with
creating an Ontology Instance Migration Scenario (OIMS) using the algorithm
presented in this paper and the previously created mappings. We review the OIMS
to validate it, edit incomplete and add missed transformations. Such manual
additions are necessary to encode complex transformations. We finally execute the
OIMS using the environment which performs the instance migration.

1 Introduction

Instance migrations are the part of the ontology development and ontology alignment
activities. The ontology development process often includes an evolution of the ontology
design. It is common practice to change the TBox ontology part during the ontology
development cycle, but the set of facts remain the same and needs to be encoded
according to the new TBox. Ontology alignment is used to allow interoperability
between heterogeneous data sources described with their own ontologies. In both cases,
the TBox is the first place to analyze the differences when performing alignment. It is
also possible to map pairs of TBox-es to each other – this can be done for example
manually. But the size of the corresponding ABox makes manual migration of the
instances a complicated task. We describe an approach and an algorithm for solving this

complex task semi-automatically. The presented approach helps to create instance
migration scenario and thus gives the user full control of the instance migration process
by changing scenario blocks and their order. Users will be able to develop scenarios
using the provided programming library facilities and run this scenario as a program in
an execution environment. TBox mappings will be used to map source ontology instance
property values to target instance property values.

The Performance Simulation Initiative (PSI) project was started by Cadence Design
Systems GmbH to help customers in finding and improving the weak spots in their
design processes and thereby increasing performance. In the PSI project we acquire and
formalize data about dynamic engineering design processes in microelectronics design
projects by acquiring knowledge about them using our in-house methodology [So06]
based on PSI family of OWL ontologies [Er06a]. Data from one of the real projects run
at Cadence was used as test case data to evaluate the PSI family ontologies and was
encoded as ABox ontology part – the data was represented as OWL instances. The PSI
family ontologies evolved since the project start from version 1.0 to 1.6. Changes were
mainly made in the TBox ontology part. To perform tests, the test case data needed to be
reformatted using the most current ontology version.

The paper is structured as follows. Section 2 specifies initial requirements and the
ancestor solution used to solve a similar task. Section 3 presents the Ontology Instance
Migration Methodology. Section 4 explains the methodology steps in detail using an
example. Section 5 summarizes the results and contains the plans for the future work.

2 Current solution - instance population script

The ancestor of the presented methodology is the instance population script used in the
PSI project as current solution. The Instance Population Program (IPP) was developed to
automate the task of encoding the test case project data in OWL. Perl1 was chosen as
implementation language.

As input data IPP accepts tables with related items which have to be stored in CSV2 text
files. The CSV format has not the ability to store relations between items so these
relations’ information was encoded inside the IPP. The IPP generates OWL instances for
the project data according to the TBox and saves them into OWL files.

It performs instance population with test case project data loaded from .csv text files by
creating instances for ontology classes, setting the property values for them, and defining
object relations by setting object properties. The property value and object property
definition process is partially hardcoded in the program modules. Thus a new IPP
version had to be developed whenever a new PSI ontology family version was designed.

1 Perl (Practical Extraction and Report Language) is a dynamic programming language. Perl borrows features
from a variety of other languages including C, shell scripting (sh), AWK, sed and Lisp.
2 RFC4180. Common Format and MIME Type for Comma-Separated Values (CSV) Files
http://tools.ietf.org/html/rfc4180

IPP performs the following actions:

1) Loads the TBox: owl:import links, Name Spaces, concept names, properties and
URIs, and processes the imported ontologies

2) Reads the data from csv text files and uses it to create OWL instances, set property
values, and create links with other instances

3) Performs a set of instance data validation tests

4) Writes out the OWL-file(s)

The amount of work to develop a new IPP version was much less in comparison to the
amount of work to develop the first IPP version from scratch. Initially it was necessary
to update the TBox encoding for each new ontology version while the other IPP parts
were left mostly unchanged. Later versions of the IPP were also able to load the TBox
completely from OWL-files and manual changes were then only done to the instance
generation part.

Currently, all instance populations for new ontology versions in PSI are performed using
the IPP. So far 3 major versions were developed (to populate PSI ontologies from v.1.4
to v.1.6 with test case instances). Additionally, about 10 minor versions have been
written during ontology development and refinement. The latest version allows
populating PSI Ontologies Suite v.1.6 [Er06b] with the instances corresponding to 4
different test cases. The IPP helps to generate roughly 400 instances, fill their property
values and establish object relations between the generated instances.

It reduces the amount of work to generate ABox data from several test case data sets for
a predefined TBox hard-wired in the IPP script. It also allows output ontology TBox
changes with little amount of work on updating the program code. It took weeks to
develop the IPP, but with it version updates are done in about 30 minutes.

The IPP is a specific purpose tool and as such it cannot work with ontologies different
from the one it has been developed for. To make it work with other ontologies, the
program code has to be seriously revised manually. The complexity of this revision is
comparable with the complexity of developing it from scratch. Furthermore, the IPP
cannot be used without substantial reprogramming for different output ontologies and
source data.

3 Ontology Instance Migration Methodology

The main objective of developing our OIMM was to provide a feasible way of actually
migrating instances between ontology versions instead of rebuilding the instances from
scratch. The most important point was to reduce the work on defining instance data
transformation to a minimum. The methodology should allow an ontology engineer to

spend less time on creating instances for new ontology versions. It should also be usable
without the substantial programming knowledge needed for updating the IPP.

To automate loading the source information and storing the resulting information, we
use the Jena API3 which supports parsing ontology files into an ontology model, creates
objects for concepts and instances within this model and allows to save the ontology
model to a file. To define the instance data transformation, we propose to create
mappings between the TBoxes of ontologies using existing tools with convenient
graphical user interfaces.

To populate the new ontology with the instances taken from the old one, we present a
methodology which consists of the following steps: (i) build mappings between the
TBoxes; (ii) create an Ontology Instance Migration Scenario (OIMS) using these
mappings and algorithm patterns; (iii) execute the OIMS to perform instance migration.
The OntoStudio with the OntoMap[We05] plugin is used to create the ontology
mappings of step 1, the scenario of step 2 is build by manually extending algorithms
(section 3.2). In step 3, we need to execute the scenario encoded as a Python script. For
that, we are developing a scenario execution environment. The execution environment
requirements are presented in section 3.3.

3.1 Mapping Creation

An ontology as a knowledge base consists of conceptual or terminological knowledge
(TBox) and instance or assertional knowledge (ABox). The TBox is represented by sets
of the following ontology entities - concepts, concept properties and concept relations. In
the following, we shall call a single correspondence between a set of ontological entities
a mapping rule and a set of mapping rules between a source and a target ontology a
mapping. A simple mapping rule is a one-to-one concept relation. Complex mapping
rules define one-to-many, many-to-one, many-to-many relationships.

In our work to create and manage mappings in a graphical environment, we have chosen
the OntoMap plugin for the ontology-management platform OntoStudio . It supports the
creation and management of ontology mappings via a graphical interface. Mappings can
be specified based on graphical representation, using a schema-view of the respective
ontologies. Users just have to understand the semantics of the graphical representation
(e.g. an arrow connecting two concepts), they do not have to worry about the logical
representation mappings. The user of OntoMap is supported by drag-and-drop
functionality and simple consistency checks on property-mappings (automatic
suggestion of necessary class-mappings). For concept mappings constraints can be
specified on the available attributes, based on a form.

OntoStudio has its own grounding of mappings, based on F-Logic rules [Ki97].

3 Jena is a Java framework for building Semantic Web applications. It provides a programmatic environment
for RDF, RDFS and OWL, SPARQL and includes a rule-based inference engine. Jena is open source and
grown out of work with the HP Labs Semantic Web Programme. http://jena.sourceforge.net/

OntoMap supports simple types of mappings. If more complex mappings are needed
(possibly using complex logical expressions or built-ins), they have to be encoded
manually. Despite that, OntoMap covers a substantial number of use-cases. The rules
that are currently supported include: concept to concept mappings, attribute to attribute
mappings, relation to relation mappings, attribute to concept mappings [We05].

The language for ontology mappings used in OntoMap has been developed as language-
neutral representation of mappings that correspond to mapping-patterns [Br05a].
Mapping patterns represent a schema for frequent mappings. Persistency of mappings
defined in the Mapping Language is supported by a Language API Java-library [Sch05].
It is possible to export mappings from OntoMap to the OWL format. Mappings in this
format can be parsed and reused.

The first OIMM step is to create mappings with the OntoMap tool by connecting related
concepts, properties and relations. To specify complex concept mappings two or more
one-to-one simple concept mappings need to be created. Then the mapping rules are
exported to an OWL file. These mappings will be used in the Ontology Instance
Migration Scenario.

3.2 Creating Ontology Instance Migration Scenario

An Ontology Instance Migration Scenario can be described as an IPP extended with the
capability to accept input data as an arbitrary OWL ontology and a predefined set of
actions for instance creation and linking using mapping rules.

The OIMS algorithm consists of blocks similar to the ones of an IPP:

1) Load information about the TBox of the source ontology Os and the target ontology
Ot: owl:import links, Name Spaces, concept names, properties and URIs. Load imported
ontologies. Load ABox instance data of the Os.

2) Populate instances for Ot, setting property values and creating object property links
with other instances using the TBox and the ABox of the Os and the defined mapping
rules. Simple concept mappings and property mappings will be used to set Ot instance
property values with Os instance property values mapped to them;

The following steps need be performed for instance population:

(i) Create target instances and set property values. These newly made instances are not
linked with each other with object properties on this step. Also prepare list of the source
ontology concepts not mapped with concepts in target ontology.

prepare o1sorted - the list of concepts from O1 sorted by the number of corresponding
instances ascending
create ABox2 ontology model
foreach Cs in o1sorted do
 if exists GetMR(C) then
 if GetMR(Cs).mappingtype is one-to-one or many-to-one:

 Ct = GetMR(Cs).target
 foreach Is in instances of Cs:
 create instance It of Ct in the ABox2 ontology model
 set It.source_instance=Is
 set It.ccmapping_rule=MR(Cs)
 set It.source_concept=Cs
 setvalues(It,Is,MR(Cs).propertymapping)
 else
 add C to the ComplexMappedConceptsList
 else
 add C to the NotMappedConceptsList

GetMR(C) – get concept mapping rule for concept C (as a source).
setvalues(It,Is,MR(Cs).propertymapping) – set property values of instance It with
property values from the Is, converting them using property mappings for concept Cs.

(ii) The user reviews list of not mapped concepts and if some mappings were missing,
adds them using the mapping editor tool and performs step 1 again. Or he(she) manually
adds commands for instance creation. The user should provide the following information
in his commands: source concept(s), target concepts, and rules to create and fill instances
using source instances. This info will be used on step 3 to add instance relations.

foreach Is in instances of Cs:
 create instance It of Ct in the ABox2 ontology model
 set It.source_instance=Is
 set It.ccmapping_rule=’manual’
 set It.source_concept=Cs
 customsetvalues(It,Is)

customsetvalues(It,Is) – custom function which defines a manually encoded instance to
instance mapping algorithm. To help an ontology engineer to create custom mapping
functions, we are planning to develop patterns of custom instance to instance mapping
algorithms for different ontology mapping cases. Then we shall collect these patterns in
a library.

(iii) Instance relations creation is performed by the following algorithm: Search Ot for
instances to be related to one another and find the objectproperty to be set to relate the
instances. It also detects the concepts without instances from the target ontology and add
then to the list for manual inspection.

foreach Ct in O2ConceptList:
 IList = I(Ct)
 foreach or in GetObjectPropertiesFor(Ct):
 Cm = or.getRDFSRange
 IMappedList = I(Cm)
 foreach inst in IList:
 sourceinst = inst.source_instance
 SourceConnectedList = GetSourceConnectedList(sourceinst)
 if size(SourceConnectedList)>0 then
 for scinst in SourceConnectedList:
 for icm in I(Cm):
 if icm.source_instance==scinst

 relate(inst,icm,or)
foreach Ct in O2ConceptList:
 if I(Ct)==0 then
 add Ct to the ConceptsWithoutInstances list

GetObjectPropertiesFor(C) – get list of concept’s object properties.
I(C) – get instances list for the Concept
GetSourceConnectedList(sourceinst) – get the list of instances connected with source
instance.
Size(L) –get array size

(iv) The user checks concepts from the ConceptsWithoutInstances list and adds
commands for creating instances if it is required.

3) Perform instance data validation tests to check restrictions defined in Ot;

4) Write out results to OWL-file(s).

3.3 Scenario execution environment requirements

Execution of blocks 1, 3, 4 can be easily encoded as a program. User should manually
define the part of block 2 to edit incomplete and add missed transformations. A scenario
can be encoded as Python4 script. Already formalized methods will be implemented as
programming library. The execution environment will consist of an interpreter for the
programming language and a common function library.

Initial requirements for the execution environment are the following:

Programming language requirements – A language with syntax close to natural
language; interpreted scripting language – so user will not have to manually compile
program on every update; should have the ability to reuse existing Java ontology
management libraries. Using Jython5 will help to reuse Java libs from scripts written on
Python.

The common function library should contain implementation of the following actions
performed within the described methodology: Load source ontology TBox and ABox,
load target ontology TBox, create instance of concept, iterate over ontology concepts,
iterate over instances for concept or related to another instance, access concept and
instance property values and relations, select instances of class, find mapping by source
concept, check concept mapping type.

4 Python is an interpreted, object-oriented programming language, http://www.python.org/
5 Jython is an Java implementation of the high-level, dynamic, object-oriented language Python, and integrated
with the Java platform. It allows to run Python on any Java platform and to use existing Java libraries from
Python,http://www.jython.org/Project/index.html

4 Mapping instances evaluation example

To illustrate the presented methodology we shall use a fragment of the evolving Task-
Activity (TA) ontology of the PSI ontologies suite [Er06a, Er06b].

In this example the fragment of TA evolves from v.1.4 [Er06] to v.1.5 [Er06a] and the
following pieces are available: TBox and ABox of TA ontology version 1.4 and TBox
only for ontology version 1.5. We also have the descriptions of the changes in the
ontology specification [Er06a]. The task is to migrate the instances from the ABox of
TA ontology version 1.4 into the ABox of TA ontology version 1.5.

The fragment of the Task-Activity Ontology V.1.4 to which the changes are applied is
shown in Fig. 1a. The changes in the Task-Activity Ontology are shown in Fig. 1b. Fig 1
also shows the substitutions of the concepts.

MaterialInputRepresentation, MaterialOutputRepresentation, MaterialInput, and
MaterialOutput concepts were dismissed and replaced by the concepts of
DAStatePattern for a GenericActivity and the concept of a DAState for an Activity.
The Activity concept was renamed to GenericActivity. The InputConfig concept was
added. The properties of an InputConfig association concept are: level – Collection:
denotes the location of the intended source (DesignArtifact) of an input in the
decomposition hierarchy, and required: Boolean – describes that at least one matching
DA must be found or the activity cannot be applied. GenericActivity receives a new
property: effortLimit: double – the upper bound value of the effort spent to execute the
described activity. The AssociatedActivity concept was renamed to Activity.

The example was chosen because: (i) it is compact enough to be presented in a paper; (ii)
the fragment contains complex transformations where instances from two or many
concepts should be transferred into the instances of one concept (many-to-one complex
concept mapping).

At first, we build mappings between the ontology TBox parts of these versions using the
OntoMap plugin (Fig 2). After creating the mappings we export then into an .OWL file
(Fig. 3).

a) Updated fragment of the Task-Activity Ontology V.1.4.

Fig. 1: The changes in Task-Activity Ontology.

Fig 2. Concept and property mappings created in the OntoMap

<owl:Thing
rdf:about="mapping_source_("http://psi/15/task"#CCMap_Mater
ialOutputRepresentation_DAStatePattern,
"http://psi/14/task"#MaterialOutputRepresentation)">
<b:type_>Concept</b:type_>
<b:sourceTransformation_>""</b:sourceTransformation_>
<b:sourceModule_>"http://psi/14/task"</b:sourceModule_>
<b:sourceId_
rdf:resource="http://psi/14/task#MaterialOutputRepresentation"
/>
</owl:Thing>
<owl:Thing
rdf:about="mapping_source_("http://psi/15/task"#CCMap_Mater
ialInputRepresentation_DAStatePattern,
"http://psi/14/task"#MaterialInputRepresentation)">
<b:type_>Concept</b:type_><b:sourceTransformation_>""</b
:sourceTransformation_><b:sourceModule_>"http://psi/14/task"
</b:sourceModule_>
<b:sourceId_rdf:resource="http://psi/14/task#MaterialInputRepr
esentation" />
</owl:Thing>

<owl:Thing
rdf:about="mapping_source_("http://psi/15/task"#AAMapping11
71428954501,"http://psi/14/task"#"AssociatedActivity-name")">
<b:type_>Attribute</b:type_>
<b:sourceRange_
rdf:resource="http://www.w3.org/2001/XMLSchema#string" />
<b:sourceConcept_
rdf:resource="http://psi/14/task#AssociatedActivity" />
<b:sourceTransformation_>""</b:sourceTransformation_>
<b:sourceModule_>"http://psi/14/task"</b:sourceModule_>
<b:sourceId_
rdf:resource="http://psi/14/task#"AssociatedActivity-name"" />
</owl:Thing>

Fig 3. Mappings presented using Ontology Mapping Specifiation Language encoded in
OWL format

name: string

AssociatedAc
tivity

name: string

Activity

MaterialInpu

name: string
afterExecutionOf-
Activity
triggersIfAvailabl
e-EO

MaterialOutput
Rrepesent

name: string
description: string
configuresOutputOf
GA
configuresInputOfIC
triggersGEI

DAStatePattern

The following mapping rule set fragment will be used in our example:

Mapping rule id Source target

CCMapping1171829
754406

http://psi/14/task#Precondition http://psi/15/task#Precon
dition

CCMapping1171829
427390

http://psi/14/task#MaterialOutputRe
presentation

http://psi/15/task#DASta
tePattern

CCMapping1171829
425656

http://psi/14/task#MaterialInputRepr
esentation

http://psi/15/task#DASta
tePattern

Mapping rules CCMapping1171829425656 and CCMapping1171829427390 have the
same target concept http://psi/15/task#DAStatePattern which means that this is a many-
to-one concept mapping rule.

While performing step 1 of the instance population scenario we create new instances.
The concept MaterialOutputRepresentation in the source ontology has 13 instances:
MaterialOutputRepresentation_1 .. MaterialOutputRepresentation_13. According to the
algorithm, we should create a new instance in the target ontology for each of them. The
source ontology instance MaterialOutputRepresentation_3 has the following properties:

MaterialOutputRepresentation_3 properties:
MaterialOutputRepresentation-triggersIfAvailable-EventualOutput =

http://psi/14/ssmhc#EventualOutput_11
MaterialOutputRepresentation-isTheViewOf-DARepresentation =

http://psi/14/ssmhc#DARepresentation_3
MaterialOutputRepresentation-afterExecutionOf-Activity =

http://psi/14/ssmhc#Activity_13
MaterialOutputRepresentation-name=Testplan
rdf#type =http://psi/14/task#MaterialOutputRepresentation

On the target side, we create an empty instance http://psi/15/ssmhc#DAStatePattern_1.
The MaterialOutputRepresentation’s name property is equal to the DAStatePattern’s
name property. Therefore, we set the value of the name property for the new instance
with corresponding values from the source instance. The Id is generated automatically
with the internal instance counter. We also set algorithm specific values:

DAStatePattern-name=Testplan
DAStatePattern-id=1
#_source_concept= http://psi/14/task#MaterialOutputRepresentation_
#_source_instance= http://psi/14/task#MaterialOutputRepresentation_3

Then we perform similar actions for all concepts’ instances from the source ontology.

After creating all instances in the target ontology we need to establish the object
relations between them. Lets do this for the instance
http://psi/15/ssmhc#DAStatePattern_1 created from MaterialOutputRepresentation_3 in
the example before.

After step 1, the concept http://psi/15/task#DAStatePattern has 26 instances which were
created from 12 MaterialOutputRepresentation instances and 14
MaterialInputRepresentation instances according to many-to-one concept mapping rule.

The concept DAStatePattern has the following object properties: DAStatePattern-
configuresOutputOf-GenericActivity, DAStatePattern-configures-DAState,
DAStatePattern-configuresInputOf-InputConfig, DAStatePattern-triggers-
GenericEventualInput, DAStatePattern-triggersIfAvailable-GenericEventualOutput. For
each object property, we get its range concept from the object property definition. For
example for the DAStatePattern-configuresOutputOf-GenericActivity it will be the
GenericActivity concept.

For the GenericActivity concept we have 13 instances created from instances of the
Activity. We will iterate over GenericActivity instances getting _source_instance. For
GenericActivity_13, the source instance in our example is Activity_13. It is linked with
the MaterialOutputRepresentation_3 instance by the following object property: Activity-
transformsTo-MaterialOutputRepresentation = MaterialOutputRepresentation_3.

So one of the instances related with Activity_13 instance from the source ontology is
MaterialOutputRepresentation_3 and it matches the source instance of DAStatePattern.
Therefoe, we can set the object property value GenericActivity-hasOutputConfiguredBy-
DAStatePattern of the instance GenericActivity_13 with the instance DAStatePattern_1.

During the instance migration for this example, we have been able to create and link
instances for 11 concepts using the presented algorithm. Manual commands were
required to create instances of one concept – InputConfig.

5 Discussion and Related Work

Our methodology connects 3 core components: mapping language, graphical user
interface to build mapping rules, and an instance transformation tool. There are other
ontology alignment solutions which cover all or part of these three components. They are
WSMO Studio[Si06] and WSMX[Ci05] tools developed as a part of DIP project[Ha04],
OntoMap Ontoprise plugin[We05] developed as a part of SEKT6 project, and
PromptMap Protégé editor plugin7 from Protégé team.

OntoPrise OntoStudio OntoMap plugin provide the most convenient GUI to build
mapping rules in comparison with the others. But they do not have a tool to perform
instance transformation yet. PromptMap and WSMX have instance mapping facilities
controlled by mapping rules. But after creating mapping rules, the user is not able to
control the instance transformation process. Our methodology allows doing this.

6 Semantic Knowledge Technologies (SEKT) developed and exploited semantic knowledge technologies. Core
to the SEKT project has been the creation of synergies by combining the three core research areas ontology
management, machine learning and natural language processing. http://www.sekt-project.org/
7 The PROMPT plug-in allows to manage multiple ontologies in Protégé Ontology Editor,
http://protege.cim3.net/cgi-bin/wiki.pl?Prompt

 WSMO Studio Protégé Mapping
Tab

Ontoprise
OntoStudio

GUI functionality:

One-to-one concept
mappings building
support

yes yes yes

One-to-many,
many-to-many
concept mappings

yes no yes

Property mappings no yes yes

objectproperty
mappings

yes no yes

Importing from owl
files support

yes yes yes*

Exporting to the
owl format support

no yes yes

Used mapping
language

Mapping
Language[SB05]

An Ontology of
Mapping Relations
by Monica Crubezy

team, Stanford
University [Cr03]

Mapping
Language[SB05]

* The current version of the Ontoprise OntoStudio (Version: 1.6.0 Build id: 1003) does
not load owl ontologies distributed in more then one file and connected by owl:imports
statement. In our example we have to glue PSI ontology files into one.

The methodology we are presenting in this paper uses the existing components:
mappings representation language[Sb05] and OntoMap as GUI mapping rules builder.
And concentrates on developing its own instance transformation tool. Our approach
should allow an ontology engineer to spend less time on performing instance
transformation between ontologies by using mapping rules to generate instance
transformation scenario. Scenario is encoded as program thus gives the user full control
on it by editing this program.

In our methodology, the instance transformation is performed within the scenario
execution environment. The execution environment consists of an interpreter for the
programming language and a common function library. We reviewed several
programming languages (see following list) to choose a programming language and have

chosen Jython as the most developed Java integration solution in comparison with the
others.

 Java Perl Python Ruby

Is there need to
learn new
language

No No, Perl is
already used in
PSI

Yes Yes

Possible to reuse
Java code

Yes No Yes, Jython Yes, JRuby

Need to be
compiled

Yes No No No

Has owl ontology
management libs

Yes Yes Yes Yes

Full integration
with Java lib
version

- - (existing
solution requires
compilation of
program)

Jython 2.2
Beta1, JPype
0.5.2.1

JRuby 0.9.2

Easy to learn No Yes Yes Yes

Concluding Remarks

This paper presents our results in developing the Ontology Instance Migration
Methodology. The main goal of this methodology is to populate an ontology with the
instances taken from another one using a TBox mapping and thus reducing the volume
of manual work in aligning one ontology to the other one. We used existing ontology
mapping methods and an algorithm based on initial instance population program used in
the PSI project to develop a general OIMM which provides the ability to perform
migrations between a pair of ontologies. In this paper, we presented the algorithm for an
ontology instances migration scenario and gathered the requirements for its
implementation.

In the future, we are going to implement the scenario execution environment according
to specified requirements and develop a programming library for the implementation of
scenario algorithms. It will provide ready to use commands and programming blocks for
all typical instance migration tasks. We are also planning to develop more custom
instance population algorithms for other ontology fragments and gather them as an
algorithm pattern library. The next step will be an automatic generation of instance
transformation scenarios based on TBox mappings.

Acknowledgements

We would like to acknowledge the substantial aid by all the members of the PSI project
team in discussing the instance migration methodology and working on the initial
requirements.

Bibliography

[So06] Sohnius, R. et. al.: Managing Concurrent Engineering Design Processes and Associated
Knowledge. In: Ghodous, P., Dieng-Kuntz, R., and Loureiro, G. (Eds.): Leading the
Web in Concurrent Engineering. Proc. 13th ISPE Int Conf on Concurrent Engineering:
Research and Applications, 18 - 22 Sept., Antibes, French Riviera, IOS Press, Series:
Frontiers in AI and Applications, Vol. 143, pp. 198-205, 2006

[SB05] Scharffe F.; de Bruijn J.: A Language to specify Mappings between Ontologies, IEEE
Conference on Internet-Based Systems (SITIS6), December 2005, Yaounde, Cameroon.

[Sch05] Scharffe F.: Ontology Mapping Specification Language API. Prototype Fact Sheet,
2005, http://www.omwg.org/tools/omaplang/v0.2/FactSheet.html

[Br05] de Bruijn J. et. al.: The Web Service Modeling Language WSML. WSML Final Draft 5
October 2005, http://www.wsmo.org/TR/d16/d16.1/v0.21/

[Br05a] de Bruijn, J.; Foxvog, D.; Zimmerman, K.: Ontology Mediation Patterns Library V1.
SEKT Project Deliverable D4.3.1. 2005

[Er06] Ermolayev, V. et. al.: The Family of PSI Ontologies Version 1.4. Reference
Specification. Technical Report. Cadence Design Systems, GmbH, 47 p., 2006

[Er06a] Ermolayev. V. et. al.: Performance Simulation Initiative. The Family of PSI Ontologies
v.1.5. Reference Specification. Technical Report PSI-ONTO-TR-2006-3, 14.04.2006,
Cadence Design Systems, GmbH, 56 p.

[Er06b] Ermolayev. V. et. al.: Performance Simulation Initiative. The Family of PSI Ontologies
v.1.6. Reference Specification., 2006, Cadence Design Systems, GmbH.

[We05] Weiten M., Wenke D., Meier-Collin. M.: D4.5.3 Prototype of the ontology mediation
software V1, 2005

[KL97] Kifer, M. And Lausen, G.: FLogic: A higher-order language for reasoning about
objects. SIGMOD Record, Vol. 18 (1997) No. 6, pp 134-146

[MH04] McGuinness D., van Harmelen F.: OWL Web Ontology Language Overview, 2004,
http://www.w3.org/TR/owl-features/

[Cr03] Crubezy M., Pincus Z., Musen M.: Mediating Knowledge between Application
Components, SMI-2003-0978, 2003

[Si06] Simov, A. et. al.: D4.11: WSMO Studio v2, DIP Project, WP 4b 2006, WSMO Platform
& Tools. http://dip.semanticweb.org

[Ci05] Cimpian, E.; Vitvar, T.; Zaremba, M.: “D13.0v0.2 Overview and Scope of WSMX”,
WSMX Working Draft 2005-02-23. http://www.wsmo.org/TR/d13/d13.0/v0.2/

[Ha04] Hauswirth, M. et al.: D6.2: DIP Architecture, DIP Project, WP6 Interoperability and
Architecture. 2004. http://dip.semanticweb.org.

