
Modeling Dynamic Engineering Design Processes
in PSI

Vadim Ermolayev3, Eyck Jentzsch1, Oleg Karsayev2, Natalya Keberle3,
Wolf-Ekkehard Matzke1, Vladimir Samoylov2

1Cadence Design Systems, GmbH, Feldkirchen, Germany
{wolf, jentzsch}@cadence.com

2SPII RAS, Saint Petersburg, Russia
{ok, samovl}@iias.spb.su

3Zaporozhye National Univ., Zaporozhye, Ukraine
{eva, kenga}@zsu.zp.ua

Abstract. One way to make engineering design effective and efficient is to
make its processes flexible – i.e. self-adjusting, self-configuring, and self-
optimizing at run time. The paper presents the descriptive part of the Dynamic
Engineering Design Process (DEDP) modeling framework developed in PSI1
project. The project aims to build a software tool assisting managers to analyze
and enhance the productivity of the DEDPs through process simulations. The
framework incorporates the models of teams and actors, tasks and activities,
design artifacts as the major interrelated parts. DEDPs are modeled as weakly
defined flows of tasks and atomic activities which may only “become apparent”
at run time because of several presented dynamic factors. The processes are
self-formed through the mechanisms of collaboration in the dynamic team of
actors. These mechanisms are based on several types of contracting
negotiations. DEDP productivity is assessed by the Units of Welfare collected
by the multi-agent system which models the design team. The models of the
framework are formalized in the family of DEDP ontologies.

1 Introduction

It is widely accepted that the processes of engineering design differ from
manufacturing processes by the fact that they “… are frequently chaotic and non-
linear, and have not been well served by project management or workflow tools” (cf.
[NSB01]). The primary reason is that the ability to design is one of the signatures of
human intelligence which can hardly be framed by the rigid and static bounds of pre-
defined business processes. Therefore one of the promising ways to make engineering
design effective and efficient is to manage its processes in a flexible manner – i.e.
make them self-adjusting, self-configuring, and self-optimizing at run time. By doing
so we may enhance the degree of coherence between the interrelated activities and
make them better coordinated and therefore more productive. Hence, the model of a

1 Productivity Simulation Initiative (PSI) is the R&D project of Cadence Design Systems

GmbH.

2 Vadim Ermolayev et al.

DEDP should be at least capable to account for the constellation of the factors which
make a DEDP “chaotic and non-linear” and, at most, to eliminate them as much as
possible. Provided that we have built such a fine-grained DEDP modeling framework,
we may expect implementing software tools allowing to assess a process and,
ultimately, to optimize DEDPs in terms of engineering design productivity.

Improving DEDPs in terms of engineering design productivity is the focus of PSI
project. The project have prototyped a software tool which provides for the
assessment of the accomplished DEDPs and the prediction of the characteristics of the
planned DEDPs through their simulations. This simulation prototype has been
implemented as a multi-agent system [Go05]2 which models designers’ teams
working on projects by dynamically formed teams of software agents, DEDPs
performed by these teams – by tasks, and the results of these processes – by design
artifacts. The knowledge on the performed processes is formalized and stored to PSI
testbed in terms of DEDP family of ontologies presented in this paper. Through that
we obtain the incremental collection of actors’ experience which is further on used to
make simulation results more reliable.

The paper is structured as follows. Section 2 discusses modeling requirements
justifying the necessity to cope with the dynamic character of DEDPs. Section 3
outlines our approach to assessing the productivity of DEDPs. Then PSI Actor model,
Task-Activity model and Design Artifact model are presented in Sections 4 – 6.
Section 7 deals with the epistemological aspects of DEDP ontologies family and the
usage of these ontologies in PSI in the form of DEDP-lite ontologies. Section 8
surveys the related work and analyses the contributions of DEDP modeling
framework.

2 The Model of a Dynamic Engineering Design Process

A DEDP is the process of aiming a weakly defined engineering design workflow to
achieve its goal in an optimal way in terms of result quality and gained productivity.
It is therefore clear that the following entities are involved in the process: actors, who
form design teams and collaboratively do the work in the flow; activities which are
the atomic parts of a workflow defined by the technology used in the house; tasks
which are subjective actors’ representations of activities’ compositions and
choreography3; and design artifacts which are the results of engineering design
activities. Hence, only engineering design activities are defined by the design
technology and are well known before a DEDP starts. Other elements may only
“become apparent” at run time because:
− The treatment of a task as atomic or composite is different by the actors having

different capabilities. A task which is perceived as an atomic activity by one actor
may be recognized as composite by another actor.

2 [Go05] is the parallel paper which reports on the implementation and the evaluation

experiments with PSI simulation prototype. In this paper we omit the description of this
important part of our research due to space limitations.

3 Choreography in the mentioned context is understood similarly to Web Services
choreography and means the way of arranging material input – output communication among
the dependent activities.

Modeling Dynamic Engineering Design Processes in PSI 3

− The composition [Er04] of the activities is defined only subjectively and partially.
Tasks in our model may be composed of the activities and other tasks in different
ways by different actors having different knowledge. It implies that the sequence
of activities and sub-tasks in a task may be understood differently in the partial
local plans of different actors.

− The number of activity loops is not defined in advance. It depends on the quality
checks at intermediate steps. Changing the number of activity loops may cause the
changes in its duration. In turn, it may cause the delays of the dependent tasks and
activities with associated penalties for, e.g., deadline violation.

− The duration of activity execution is not defined in advance. Different actors
possess different capacities to be spent for the activity at a certain time. They may
perform the same activity with different efficiency (productivity – Section 3). An
activity may remain idle while waiting until the pre-conditions have been triggered.
Idle state duration can’t be computed in advance because the preconditions may be
formed by the other activities executed by other actors.

− The actors are not assigned in advance to perform certain activities. An actor is
chosen by the Task Manager when s/he decides to assign the activity. In PSI
framework contracting negotiations are the means to optimally choose the actor to
perform the task. DEDP model should therefore incorporate the actor model and
the means to arrange actors’ collaboration through peers’ assessment and
negotiations.
Mentioned factors provide certain degrees of freedom4 in DEDP planning, re-

planning, scheduling, re-scheduling, and execution. In PSI a DEDP is not rigidly
planned before it starts. The decisions on how to continue its execution are taken each
time it reaches a certain state in the state space. These decisions are taken by the
design team members (Section 4) who manage the tasks which continue the process.
According to the aforementioned properties of a DEDP different paths through the
state space may be more or less productive.

As shown in Fig. 1 a DEDP has components which differ along the dimensions of
their changeability. The first dimension is the dynamic character ranging from static,
i.e. pre-defined for all possible DEDPs, to dynamic, i.e., subjected to changes in a
DEDP. Another dimension is the sphere of visibility or commitment. It ranges from
shared, i.e., having the same meaning and instances for all DEDP participants, to
subjective, i.e. having specific instances for different actors (though in the terms of a
common ontology). Static shared DEDP components are atomic activities, associated
software tools, and resources. It is assumed that the processes are assembled
(ultimately) of atomic activities which are the pieces of the design technology used by
the company. The technology normally provided by a design support unit often
suggests the usage of a specific software tool to perform the activity. The execution of
a given activity consumes certain resource instances in given quantities. The model of
a design process is based on the following assumptions. A DEDP is initiated by an
external influence providing a goal to a certain actor. This goal is subjectively
transformed to a task according to the knowledge of this actor. The actor uses his or
her subjective knowledge about the composition of the task, i.e. about the sub-tasks

4 It should be noted here that this freedom implies more complications in planning, scheduling

and the necessity to deal with finer grained DEDP model.

4 Vadim Ermolayev et al.

and the atomic activities to be
performed within the given
task. The dependencies
between different tasks are also
the subjective knowledge of an
actor and are formalized in his
or her Partial Local Plans
(PLP). The actor may decide to
perform a sub-task or to
execute an activity of a
decomposed task himself or to

a
P
c
H
T
d
c
o
l
o
t
a
F
e

r
p
a

F
m

3

P
s
s
n
u
w
i
c
p
n

5

Actor
? ? …
Task

Atomic Activities

Task Task

Goal

Actor

Design
Artifact

PLP

Mechanism

assess allocate

managee

commitTo

execute

isMaterialInputTo

produce

dependOn

Software
Tool

Resource
Shared Static

Subjectively
Static

Dynamic Team
join

igure 1. Static and dynamic components of DEDP
odeling framework.
hire (for the price) another
ctor through the available collaboration mechanism (contract net negotiations in
SI). In the latter case the sub-task becomes the goal of another peer-actor who
ommits himself to perform the corresponding task by striking the contract deal.
ence the appearance of actor-task combinations in a DEDP is subjectively dynamic.
he mechanism of incorporating new actors to the process and the model of the
esign team are subjectively dynamic as well since they depend on the decisions and
hoices taken at run time by the actors which states change in the process. The rules
f encounter of the mentioned mechanism are shared static and provide the horizontal
aws for the system [Er04, EJM04]. A design artifact is a subjectively dynamic
utcome of the process since it is formed out by subjectively dynamic collaborative
eam of actors. However, the proposed layering allows reaching this effect through
pplying shared static atomic activities, though in subjectively dynamic combinations.
or an activity a design artifact is both the material input and the result of its
xecution.

The actors who perform a task and initiate collaboration are Task Managers. Their
ational goal with respect to the performed task is to choose the next step on the
rocess path as productive as possible. Of course an actor needs a sort of productivity
ssessment model for that (Section 3).

 Assessing Productivity by the Earned Units of Welfare

roductivity by its very nature is one of the most important economic metrics and
tands for the ratio of the produced output (value) to the consumed input (value). As
uch it is an integral characteristic of any transformation process, e.g. a DEDP. This
eo-classical definition of productivity imposes rigid requirements on the process
nder consideration. The homogeneity of inputs and outputs is the most severe one
ith respect to engineering design. Known productivity measurement methodologies

n engineering design ground themselves on the assessment of design complexity
haracteristics in the creation of homogeneous input- and output-measures. They
retend to do it by applying heuristic weights to compared parameters (e.g., the
ormalized transistor count5 in Semiconductor and Electronic Systems (SES) design,

 Measuring IC and ASIC Design Productivity. White Paper. Numetrics Management Systems,

5201 Great America Parkway, Suite 320 Santa Clara, CA 95054, 2000

Modeling Dynamic Engineering Design Processes in PSI 5

FP, KSLOC counts6 in software design, etc.). The fundamental problem of this
approach is that the complexity characteristics need to be invariant both to the type of
a process and to the transformed design artifact. If they aren’t, measurement scales
tend to lack well-defined units. Consequently the properties of the measurement scale,
the labeling of the units, and the interpretation of the values derived are of very
limited practical use. Furthermore in non-deterministic environments such measures
are not very reliable even if proposed. It is therefore important to build a measure
which addresses the homogeneity requirement with respect to inputs and outputs and
which is invariant to the dynamic characteristics of a process (Section 2). Such a
measure may be based on the integral process success indicators like for example the
ratio of the Earned Value to the Planned Value or to the Actual Cost at a Sign-off
Stage of the process. This implies that productivity of a DEDP may be assessed by the
value produced and accumulated by designers in a team. The more value produced by
a designer – the more relatively productive s/he is. It is also true in a longer run if
several DEDPs are taken into consideration. Hence more productive designers are
characterized by the higher volume of accumulated Units of Welfare (UoW) if
designers are incentivized adequately to their produced value (assumed in PSI). This
characteristic is invariant to all aforementioned dynamic features of an engineering
design process. UoW is a normalized scalar measure which by its semantics is similar
to the notion of a Utility which is used in Distributed Rational Decision Making.
UoW earning mechanisms in PSI are based on contracting deals stricken through
several types of negotiations [EJM04].

4 Actors, Teams, Beliefs, and Negotiations

Actors and related concepts are denoted by DEDP Actor ontology which is outlined in
Fig. 2. An Actor is the abstraction of a person who performs Tasks and executes
atomic Activities which result in the transformation of Design Artifacts. An Actor as
the part of an organization plays Organizational Roles which are regulated by
organizational Policies. An Organizational Role is the subclass of an abstract Role. A
Role specifies the set of requirements to an Actor with respect to his or her capability
to execute Activities. Thus Organizational Roles and Policies constitute the
organizational framework of DEDP model. A Collaboration Role is another subclass
of a Role specifying the Roles of Actors with respect to their encounters governed by
PSI Negotiation Mechanisms defined by interaction protocols, negotiation sets, and
negotiation strategies. Therefore another important aspect covered by DEDP Actor
ontology is Collaboration and Team Formation framework. Chosen collaboration
mechanisms based on contracting negotiations (full details are in [EJM04]) imply the
appearance of the following subclasses of an Actor: a Task Manager and a Believed
Performer. A Task Manager intends to out-source a Task to one of his or her peers.
The following two aspects constrain the set of peers to the sub-set of the Believed
Performers: a Task Manager believes that the Believed Performers are (1) Capable to
perform the Task and (2) Credible enough to trust the performance of the Task to
them. These Beliefs in PSI are (1) formalized by Belief sub-ontology and (2) adjusted

6 FP stands for Functional Point, KSLOC – for kilo lines of source code.

6 Vadim Ermolayev et al.

by the Post-Effects of Activities (Section 5) through capability and credibility
assessment mechanisms adopted from RACING [Er04]. A Contractor is the sub-class
of a Believed Performer as s/he is the only one of Believed Performers who receives
the negotiated Task and commits him- or herself to perform it according to the
commitment-convention framework [EJM04]. If a Contractor according to his
subjective knowledge decides that the received Task comprises only one atomic
Activity7 then s/he becomes an Activity Executor. S/he also becomes the member of
the design Team by committing him- or herself to the Activity execution. A Team is
therefore formed of Task Managers and Activity Executors through contracting
negotiations. Conceptually a Team is the bridge providing the relationship of a DEDP
to the Project which is implemented through this DEDP.

Belief

Project

Negotiation
Software

Tool

Design
Artifact

Resource

Policy

Task
Post-Effect

Activity Actor

Task
Manager

Believed
Performer

Activity
Executor Contractor

negotiate

Negotiation
Context

assigns/assignedBy

Negotiation Set (…UoW)
Mechanism/Strategy

ex
ec

ute
s

Execution
Context

…UoW…
consumes

uses

adjusts

capableToPerform

Self-Belief
…UoW…

resultsIn Team

Org. Role Collaboration
Role

Role

plays

plays

requires

pe
rfo

rm
s

uses

*
*

* *

* *

* *

*

*

*

1

*

*

Figure 2. The outline of DEDP Actor ontology.

It is assumed in PSI that collaboration mechanisms are based on three types of
negotiations which use one basic protocol (extended FIPA CNP) but differ by
negotiation sets and strategies [EJM04]: (1) on Task allocation; (2) on Design Artifact
re-use; (3) on Software Tool provision. PSI Negotiation ontology based on [EKT02]
is used as the namespace for formalizing Negotiation Contexts in all negotiation
types.

The central property of an Actor is the capability to perform Tasks. An Actor is
capable to perform Tasks in frame of the Organizational Role he plays in the sense
that s/he has the subjective knowledge on the following: (1) if the certain Task is a
composite one or it contains only one an atomic Activity; (2) if s/he can perform this
Task by himself or he should allocate it to another Actor paying a price in UoW. This
knowledge constitutes Actor’s Self-Beliefs. Another portion of subjective Task-
related knowledge is formalized by the DEDP Task ontology (Section 5). However
the Actor ontology provides for the clear separation between the notions of a Task
and an Activity. A Task is performed – i.e. arranged and managed by Task Managers.
An Activity is executed by Activity Executors – physically: using Design Artifacts as
material Inputs and Software Tools as instruments, consuming Resources, producing
material Outputs in the form of Design Artifacts. These aspects are captured by
Execution Context concept of the Actor ontology. UoW are spent by Activity
Executors for lending Software Tools and using Resources.

7 As the Contractor believes.

Modeling Dynamic Engineering Design Processes in PSI 7

5 Tasks, Activities, and Partial Local Plans

DEDP Task-Activity model
provides formal shared static
description framework (Fig.
3) used in the knowledge
models of Actors8 to form
their subjective static
knowledge on Task
compositions, Activity
choreography, and Task
dependencies. This
knowledge according to the
Task-Activity model is
tightly linked to the Belief
and Self-Belief parts of
DEDP Actor ontology.

An Activity is the basic
process building element
which is shared static
(defined by the design
technology) and is treated as
objectively atomic by all
DEDP participants. Material
Inputs and Outputs of
Activities are also fixed by the technology and are Design Artifacts. Task-Activity
model provides corresponding relationships. An Activity as the basic building
element is the sub-class of a Task concept. In difference to a Task an Activity is the
only piece of a DEDP which is executed and produces material Outputs. A Task is
subjectively static as the representations of the compositions of the same Task may
differ from Actor to Actor. This is one of the explicit reasons to introduce a
TaskByActor concept as the sub-class of an abstract Task. A Task is linked to an
Actor by the capability relationship with the associated Self-Belief context. In
difference to an abstract Task a TaskByActor is associated with a Task Manager.
Thus its semantics becomes even more subjective in the sense that it is the Task
which is managed and, therefore, can not comprise only one atomic Activity. A
TaskByActor is the Task to which the Task Manager has committed him- or herself
by striking the deal in the contracting negotiations. Hence, a TaskByActor (but not a
Task) has UoW property associated with it. UoW property of a TaskByActor reflects
the result of the negotiations on this very task providing the Contractor with the
budget figure.

 Partial Local Plan

generates dependsOn

triggers

Design
Artifact

Task

Activity TaskByActor
...UoW…

Pre-Condition

Event
Input Output

Post-Effect

resultsIn
*

designedBy
*

appliedTo
*

isSourceFor
*

1..*

generatedBy

1

causedBy

*

causes
*

*

trig
er

ed
By

* inf
lue

nc
es

*
*

composedOf *

isPartOf
*

Role

subsumes
*

inFrameOf *

mprises
*

isP
ar

tO
f

co

*

comprises
*

isPartOf
*

 Actor

Belief

TaskManager Contractor ActivityPerformer

Actor

Software
Tool

Resource
ExecutionContext

uses

uses

co
mm

its
To

Pe
rfo

rm

1..* ma
na

ge
s

1..*

managedBy

1

ex
ec

ute
s

1..*

executedBy 1 assignedTo
*

formedBy *

adjusts
*

mayBePerformedBy
*

ableToPerform
*

cap

Figure 3. Outline of DEDP Task-Activity ontology.

A Task in difference to an Activity is managed. Task management comprises the
proper scheduling of its sub-Tasks which requires the knowledge on the dependencies
among these sub-Tasks. In the Task-Activity model Tasks may be independent or

8 Actors are modeled by economically rational software agents in PSI DEDP Simulation

Prototype [Go05].

8 Vadim Ermolayev et al.

strongly dependent on other Tasks. The model also indirectly allows coping with
facilitations (or weak dependencies). Task t1 is said to be independent of Task t2 if the
performance of t2 does not depend of t1 performance or of the results of t1 and vice
versa. The task t1 is said to be strongly dependent of task t2 if the results of t2 are
essential to start the performance of t1. Finally, task t1 is said to be facilitated by task
t2 if the performance of t2 or the results of t2 may help to execute t1 in less time, with
less resources consumed or obtaining better quality with the same resource
consumption. From productivity viewpoint facilitation means UoW savings. For
example getting a proper Design Artifact from a fellow for re-use may facilitate to the
design of the similar Design Artifact resulting in effort, resource (and therefore UoW)
savings. Hence, fine-grained knowledge on Task dependencies allows making the
process properly coordinated and therefore more productive.

One more important aspect captured by the discussed model is the subjectivism of
dependencies’ representations in the PLPs of different Actors. Dependency plans are
denoted as partial local because different Actors: (1) have different knowledge on
Task dependencies – these pieces of knowledge are the subjective parts of the whole
picture possibly leading to alternative paths in DEDP state space; (2) do not use the
knowledge of other Actors in task planning and scheduling – i.e. take their decisions
locally or autonomously.

Task-Activity model handles dependencies among Tasks based on the assumption
that the existence of a strong dependency between t1 and t2 implies that the material
Outputs of t2 are required as material Inputs to t1 before t1 starts. Therefore the Pre-
condition of t1 is that the events of the appearance of all the necessary Inputs
(eventual Inputs to be shorter) have all took place thus triggering t1. A weak
dependency is based on the same triggering mechanism through the eventual Inputs.
However in the latter case the trigger just lowers the amount of UoW required for
managing the dependent task reflecting that the facilitation has occurred. PLP part of
the Task-Activity ontology frames out the sets of eventual Inputs as Pre-conditions. It
is stated that an eventual Input is the sub-class of an eventual Output because only
some outputs may become inputs. An eventual Output is in turn the sub-class of a
Post-effect. A Post-effect is the abstraction of the changes implied by the Task onto
its environment. With respect to a DEDP Post-effects are not only the eventual
Outputs but also the events caused by Task re-planning and re-scheduling like
deadline violations. Consequently, Post-effects cause the changes in Actors’ Beliefs
(Fig. 3). Eventual Inputs, Outputs, and Post-effects are ultimately the sub-classes of
an abstract Event concept.

6 Design Artifacts and Project Memory

The purpose of PSI Design Artifact model is twofold: (1) it provides the grounding to
SES design domain and (2) it reflects the project-oriented nature of engineering
design. DEDP Design Artifact ontology is outlined in Fig. 4. From the point of view
of domain grounding the model specifies that a Design Artifact comprises the
hierarchy of Functional Blocks as the structural elements of designed functionality.
Functional Blocks are generally viewed as “gray boxes” with functional subdivision
to digital, analog and mixed-signal blocks according to the function and components

Modeling Dynamic Engineering Design Processes in PSI 9

used in their design. Therefore the Interfaces of Functional Blocks are of type Digital
or Analog. A Functional Block of mixed functionality may have Interfaces of both
types. The Functional Block of the topmost level is finally materialized in the
corresponding Chip. The description of a Chip ready for production is considered the
terminal output of a DEDP. Functional Blocks are complemented by TestBenches and
Verification Runsets – the means to test and verify designs according to the provided
engineering design technology.

The Design Artifact model provides the formal frame for handling material Inputs
and Outputs of DEDP Activities. It is considered that a Design Artifact is the material
Output of an Activity (through resultsIn – producedBy relationship) and is stored to
the design Project Memory as a Project Memory Element. A Project Memory Element
(but not a Design Artifact) is therefore the material Input to an Activity. Hence a
Design Artifact may be rightfully used as the material Input for an Activity only after
properly stored to the Project Memory. PSI mechanisms assume that a Project
Memory is a shared tuple space used for activity run-time coordination based on
blackboard principles.

7 DEDP Ontologies: Epistemology and Usage

The descriptive part of DEDP modeling framework has been initially designed as the
family of DEDP ontologies and coded in the set of UML class diagrams (further on
referenced as DEDP-full). Further formalization and implementation work has been
performed in the way aligned with scenarios of ontology usage identified by Uschold
and Jasper [UJ99]. DEDP ontologies are used [Go05] for authoring DEDP logs
recorded to PSI testbed (neutral authoring), for specifying the designs of DEDP-MAS
simulator software (ontology as software specification), and as shared ontologies for
agent communication at run time (common access to information). Ontology usage
aspects influenced the choice of the formal languages for coding the ontologies. The
ontologies were first coded in OWL-lite9 (further on referenced as DEDP-lite). This
language was chosen because it is one of the de-facto ontology specification
standards. Second reason for choosing OWL-lite was that its expressive power is
similar to that of the internal mental model specification language (MMSL) of
MASDK [Go04] which has been used for specifying the design and prototyping of

9 OWL Web Ontology Language Reference. http://www.w3.org/TR/owl-ref/

Activity

ProjectMemory

has
*

Test

DesignArtifact
- Re-useCost(UoW)

usedToVerify *

Project

ProjectMemory
Element

uses

Functional
Block

Verification
Runset

Interface

TestBench

Digital
Interface

Analog
Interface

Chip

verifiedBy
*

materializationOf *

materializedIn *

of
*

comprises
*

isPartOf
*

resultsIn *

producedBy *

storedAs
*

recordOf 1

materialInputFor *

componentOf *
contains *

Task

componentOf

*
comprises

*

Figure 4. Outline of DEDP Design Artifact ontology.

http://www.w3.org/TR/owl-ref/

10 Vadim Ermolayev et al.

PSI prototype – DEDP-MAS. From epistemological viewpoint the transformation of
DEDP-full ontologies to DEDP-lite required the changes of UML associations to the
constructs with binary relationships with restrictions. This transformation has been
performed manually with the help of Protégé 3.010 ontology editor.

DEDP-MAS has been implemented to evaluate the modeling framework and to
assess the feasibility of building a software tool for DEDP optimization through their
productivity assessment. In the performed evaluation experiments [Go05] the
simulator is used in two application modes: playback and “freestyle” (predictive)
simulation. In playback mode the simulation is used to assess the performance of the
DEDPs which have been accomplished in the past. Predictive simulation supports
project managers in planning and dynamic re-planning of running design projects in
cases of several kinds of events which are out of their direct control: late changes to
the design objective, sudden unavailability of the team members, the changes in the
workload of the designers according to the influence of the other independent
projects, etc.

Simulations performed on the With DEDP records stored to PSI testbed
demonstrated that the simulator develops DEDPs very closely to what happened in
reality. Observed fluctuations were caused by the changes in the parameters of the
availability of the team members in the course of the simulation experiments by
“screwing” their available capacities. This fact confirms the adequacy of the
developed framework to the industrial requirements in SES.

8 Related Work and Discussion

The projects which pioneered R&D in agent-based engineering design process
modeling, support and automation appeared about a decade ago, e.g. [Cu93, DB94,
BN95]. Some projects of the “second wave” [PWF99, DJ01] helped to specify the
focus of PSI in automating the near-optimal arrangement of DEDPs in terms of their
productivity.

DEDP modeling framework in its part of organizational and actor-related
knowledge representation bases itself on the frameworks [FG98, UKM98, EKT02].
PSI contribution in this part is the incorporation of roles and actors with its specific
subclasses, teams of actors, negotiation context in one coherent ontologies’ family
and its binding to the engineering design domain through incorporating Design
Artifacts and Software Tools ontologies. The main contribution of the family of
DEDP ontologies is the model of a dynamic team of designers which is formed
through contracting negotiations and performs dynamically orchestrated processes.
Hence DEDPs in PSI are understood as socially performed processes in the sense
close to [BT04]. For example the notions of a Role or a Policy of PSI Actor ontology
are semantically close to that of the normative multi-agent framework.

In the part of process modeling PSI bases its approach on [BV04, EKK04, FB02].
In the family of DEDP ontologies engineering design processes are modeled as tasks
composed of sub-tasks and atomic activities. Similarly to [NL99] subtasks and
activities may have weak and strong dependencies. However, in PSI the knowledge

10 Protégé ontology editor and knowledge acquisition system http://protege.stanford.edu/

http://protege.stanford.edu/

Modeling Dynamic Engineering Design Processes in PSI 11

on these dependencies is local and differs from actor to actor as specified in their
partial local plans. Similarly to [FB02] activities have pre-conditions and post-effects.
However, DEDP Task-Activity ontology constrains the semantics of pre-conditions
and post-effects by making them sub-classes of an event concept. Material inputs and
outputs belong semantically and structurally to DEDP Design Artifacts ontology.

Planning and scheduling are known as possibly the oldest research areas in AI.
Examples of theoretical frameworks for solving planning tasks are Decision Theoretic
Planning (DTP) [Bl99] and Hierarchical Task Networks (HTN) [EHN94]. PSI
framework is built upon the conceptual denotation of the planning task shared by the
mentioned frameworks. Planning is understood as the process of cascade
decomposition of the goal, transformation of the sub-goals to Tasks and committing
Actors to Tasks. However PSI framework extends the capabilities of the classical AI
approaches to planning by accounting the dynamic character of the process and by the
capability to collaborative distributed planning through negotiation mechanisms. The
latter feature also distinguishes our descriptive framework from the plan-task
ontology of KMI [RM04]. Moreover, the family of DEDP ontologies provides
conceptual means for dynamic re-scheduling based on the concepts of Self-Beliefs
and Beliefs.

9 Conclusions

The paper presented the descriptive part of DEDP modeling framework developed in
the PSI project. The project is aimed to build a software tool assisting in analysis and
optimization of DEDPs’ productivity through agent-based simulations. The
framework incorporates the models of teams and actors, tasks and activities, design
artifacts as the major interrelated parts. DEDPs are modeled as weakly defined flows
of tasks and atomic activities which may only “become apparent” at run time because
of several factors which are beyond the control of the design team members. The
processes are self-formed through the mechanisms of collaboration in the dynamic
team of actors. These mechanisms are based on several types of negotiations. DEDP
productivity is assessed by the Units of Welfare collected by the multi-agent system
which models the design team. The models of the framework are formalized in the
family of DEDP ontologies. These ontologies are used in the implemented simulator
software prototype. Initial evaluation experiments have been performed using PSI
testbed [Go05].

References

[Bl99] Blythe, J.: Decision-Theoretic Planning. AI Magazine, 20 (2), 1999.
[BN95] Balasubramanian, S. and Norrie, D. H.: A multi-agent intelligent design system

integrating manufacturing and shop-floor control. In: Proc. First Int. Conf. on Multi-Agent
Syst., San Francisco, pp. 3-9, 1995

[BT04] Boella, G. and van der Torre, L.: An Agent Oriented Ontology of Social Reality. In:
Varzi, A., Vieu, L. (Eds.) Proc. 3-d Int. Conf on Formal Ontology in Information Systems
(FOIS’04), Turin, Nov. 3-6, 2004, pp. 199-209

[BV04] Buhler, P. and Vidal, J.M.: Enacting BPEL4WS specified workflows with multiagent

12 Vadim Ermolayev et al.

systems. In Proc. of the Workshop on Web Services and Agent-Based Engineering, 2004
[Cu93] Cutkosky, M.R. et al: PACT: An Experiment in Integrating Concurrent Engineering

Systems. IEEE Computer 26(1), p. 28-38, 1993
[DB94] Darr, T. P., Birmingham, W. P.: An Attribute-Space Representation and Algorithm

for Concurrent Engineering. CSE-TR-221-94, University of Michigan, Department of
Electrical Engineering and Computer Science, Ann Arbor, Michigan 48109-2122, 1994.

[DJ01] Danesh, M. R. and Jin, Y.: An Agent-Based Decision Network for Concurrent
Engineering Design. CERA 9(1), 37-47, 2001.

[EHN94] Erol, K., Hendler, J. and Nau, D. S.: Semantics for Hierarchical Task-Network
Planning. Technical report CS-TR-3239, University of Maryland at College Park, 1994.

[EJM04] Ermolayev, V. et al: Agent-Based Dynamic Engineering Design Process Modeling
Framework. Technical Report. Cadence Design Systems, GmbH, 29 p., 2004.

[EKT02] Ermolayev, V. Keberle, N. and Tolok, V.: OIL Ontologies for Collaborative Task
Performance in Coalitions of Self-Interested Actors. In: H. Arisawa, Y. et al (Eds.):
Conceptual Modeling for New Information Systems Technologies ER 2001 Workshops,
Yokohama Japan, November 27-30, 2001. LNCS vol. 2465, 390-402, 2002.

[Er04] Ermolayev, V., et al: Towards a framework for agent-enabled semantic web service
composition. Int. J. of Web Services Research, 1(3): 63-87, 2004.

[FB02] Fensel, D. and Bussler, C.: The Web Service Modeling Framework WSMF. Electronic
Commerce Research and Applications 1(2): 113-137, 2002.

[FG98] Fox, M.C. and Gruninger, M.: Enterprise Modelling. AI Magazine 19(3): 109–121,
1998.

[Go04] Gorodetsky, V. et al.: Multi Agent System Development Kit: MAS software tool
implementing GAIA Methodology. In: Z. Shi and Q. He (eds.) Int. Conf. on Intelligent
Information Processing (IIP2004), Beijing, Springer, pp. 69-78. 2004.

[Go05] Gorodetsky, V., et al.: Agent-based framework for simulation and support of
Dynamic Engineering Design Processes in PSI. To appear In: Proc. CEEMAS'05, 15-17
September 2005, Budapest, Hungary.

[NL99] Nagendra Prasad, M. V., and Lesser, V. R. (1999) Learning situation-specific
coordination in cooperative multi-agent systems. Autonomous Agents and Multi-Agent
Systems. 2(2): 173-207, 1999

[NSB01] Neal, D., Smith, H. and Butler, D.: The evolution of business processes from
description to data to smart executable code – is this the future of systems integration and
collaborative commerce? Research Services Journal: March 2001, 39-49

[PWF99] Parunak, H.V.D. et al: The RAPPID Project: Symbiosis between Industrial
Requirements and MAS Research. Autonomous Agents and Multi-Agent Systems 2: 111-140,
1999.

[RM04] Rajpathak, D. and Motta, E.: An Ontological Formalization of the Planning Task. In:
Varzi, A., Vieu, L. (Eds.) Proc. 3-d Int. Conf. on Formal Ontology in Information Systems
(FOIS’04), Turin, Nov. 3-6, 2004.

[UJ99] Uschold, M. and Jasper, R.: A Framework for Understanding and Classifying
Ontology Applications. In: 12-th Workshop on Knowledge Acquisition, Modeling and
Management (KAW’99), Banff, Alberta, CA, 16-21 Oct., 1999

