
Managing Concurrent Engineering Design
Processes and Associated Knowledge

Richard SOHNIUSa, Vadim ERMOLAYEVb, Eyck JENTZSCHa, Natalya KEBERLEb,
Wolf-Ekkehard MATZKEa, Vladimir SAMOYLOVc

a Cadence Design Systems, GmbH, Mozart str., 2, 85622, Feldkirchen, Germany
b Zaporozhye National Univ., 66, Zhukovskogo st., 69063, Zaporozhye, Ukraine

c SPIIRAS, 39, 14-th Liniya, St. Petersburg, 199178, Russia

Abstract. This paper presents our work in collecting and formalizing data about
dynamic engineering design processes in microelectronics design projects. The
paper reports on our experience in evaluating the design process knowledge
acquisition routine by applying it to the real industrial project of Cadence Design
Systems, GmbH. The methodology is based on the usage of the ontologies
developed in the PSI project. Beside the actual process of formalizing the
processes it especially focuses on capturing information about the concurrency
among activities.

Keywords. Concurrent activities, Dynamic Engineering Design Process, ontology,
agent, multi-agent system, knowledge acquisition, microelectronics

1. Introduction

It is well known that the design of microelectronic devices gets more and more
complex 1 and to keep the design time and cost of such devices in reasonable
boundaries, the productivity must be increased. Cadence Design Systems GmbH
started the Performance Simulation Initiative (PSI) to help customers in finding and
improving the weak spots in their design processes [1] and thereby increasing
productivity. The approach is to examine dynamic engineering design processes
(DEDPs) [2] by acquiring knowledge about them using a family of OWL2 ontologies
[2][3], and to employ the multi-agent system approach to simulate them [4]. The
simulation results can then be used to assess past projects and to analyze how to
optimize a given design system for future projects.

In this paper we focus on the methodology of acquiring and formalizing the
information about DEDPs required for simulation using the PSI Ontologies. The paper
is structured as follows: Section 2 surveys the related work in this field; Section 3
describes the general properties of design processes; Section 4 gives an overview of the
ontologies used; Section 5 presents the different aspects of concurrency encountered;
Section 6 explains the formalization process based on an example test case; Section 7
contains the conclusions and the plans for future work.

1 Moore’s law: every 18 months the processing power (of the product) doubles while cost holds constant.
2 Web Ontology Language (OWL): http://www.w3.org/TR/owl-ref/

2. Related Work

The mainstream of formal business process modeling and engineering today is using
PSL [5], PDL [6] or their extensions. Unfortunately, these formal flow modeling
frameworks do not fully allow breaking down the diversity of the processes
encountered in real life. This diversity may be characterized for example by
Sandewall’s taxonomy [7] providing the basic features of the processes. This
classification embraces highly predictable, normal, manufacturing processes at one side
and stochastic (“surprising” 3), structurally ramified, time-bound processes
characteristic for design domain, on the other side of the spectrum.

In our search for the proper upper-level ontological paradigm for DEDP modeling
we examined the SUMO and DOLCE [8] ontologies as candidates for the formal
description framework. In DOLCE a process is the sub-category of a perdurant.
Perdurants also comprise events, phenomena, activities, and states. The semantics of a
DEDP in our framework is aligned with DOLCE in this sense. However, we consider
DEDPs to be the aggregations of the simpler occurrences: sub-processes, events, states,
activities. As in DOLCE we assume that subjects and objects are not parts of processes,
but rather participate in them or are transformed by them.

The conceptual framework and the PSI family of ontologies [3] used to model
DEDPs are the follow-up of our results published in [2]. The DEDP modeling
framework in its part of organizational and actor-related knowledge representation is
based on the frameworks [9][10][11], extends them by incorporation of roles, abilities,
actors, dynamic teams of actors, and its binds to the engineering design domain. In the
part of process modeling PSI bases its approach on [12], [13], [14]. One advancement
of the PSI ontologies family is the classification of the concurrency types as the co-
execution types [3]: sequential, partially overlapping at start (end), inner overlapping,
parallel.

3. Concurrent Engineering Design Processes in Microelectronics

The processes of designing microelectronic devices tend to be executed as parallely as
possible. The design tasks are too time-consuming to be executed in sequence since
time to market is one of the critical aspects of the process. Especially in the consumer
electronic space, certain deadlines (e.g. Christmas) must be met to survive in business.
In order to be able to exploit concurrency where possible, it is essential to model the
dependencies between tasks as detailed as possible.

Another important aspect of these design processes is the lack of predictability. No
two devices are designed exactly the same. Therefore, the simulation can only give an
approximate estimation of a process flow and the time it requires. As a result, it has to
be able to adapt as the dynamic system develops. We use DEDP-MAS [4] to simulate
human-like behaviour and to provide the required flexibility.

According to Sandewall’s taxonomy [7] a DEDP may be considered a discrete,
branching, structurally ramified, concurrent, surprising, equinormal, hierarchical,
time- and memory-bound process with delayed effects. This combination of the
features makes DEDP modeling a challenging task. The starting point for our modeling

3 A process is considered “surprising” if it is allowed that a surprising or exogenous event may cause a

change that is not anticipated by the process script [7].

framework was the observation that an arbitrary engineering design process is the
configuration of the following basic building blocks: a goal (the state of affairs to be
reached); an action; an object to apply actions to; a subject who (or which, if
unanimated) applies actions to objects; an instrument to be used by a subject to execute
actions; and an environment in which the process occurs. This structure at the first
glance resembles the one of PDI (Process Definition Interface [6]).

4. Expressing DEDP Knowledge Using PSI Ontologies

The PSI family of ontologies comprises five tightly linked ontologies which in UML
representation are grouped in separate packages: the Actor Ontology (a subject), the
DEDP Ontology (an environment), the Task-Activity Ontology (an action), the
Software Tool Ontology (an instrument), and the Design Artifact Ontology (a goal and
an object). The classes shown within the packages in Figure 1 identify the major
concepts of the respective ontology [3].

The instances created using the ontologies are grouped by their level of abstraction.
The most abstract level is the knowledge base. It contains the information on the types
of design artifacts that can exist and the activities that can be executed on these design
artifacts. This level is also considered common knowledge and is the same for all
projects examined. The next less abstract level is the project definition. It comprises all
the knowledge and data required to simulate the project: the structure of the design
artifact, the design team, its members and their skills, the available resources, the
desired project output and the time frame. Finally, the last level is the project plan. It
contains all the activities executed (or to be executed), their schedule and the
assignment of the designers and the resources to them.

One of the facets of activity descriptions used in PSI (unlike PSL [5] or TOVE [9])
is the description using the design artifact input and output representations. An activity
transforms a design artifact from one representation to another. For example Initial
RTL4 Development transforms a functional block in the representation Specification to

4 RTL (Register Transfer Level), functional description of a digital block in terms of logical and sequential

equations.

DesignTeam Resource Project

DEDP

Actor

Commitment ResourceConsumption

CommunicationChannel

Actor

Belief

Ability

Task-Activity

Task AssociatedTask

Role

Activity AssociatedActivity

SoftwareTool

SoftwareTool

DesignArtifact

ProjectMemory

Applicability

Interface Chip

DesignArtifact

Figure 1. PSI Ontology overview

the representation Initial RTL (see Figure 2a). Therefore, the simulation does not rely
on predefined plans but can link activities by the representations of their inputs and
outputs (see Figure 2c) to build a graph which shows every possible way from the
initial input representations to the target output representations and can then choose the
optimal one. Activities have a property difficulty which is used to estimate the required
design time. The result of the linking of input representations to output representations
is called the IO-chain.

Additionally, the appearance of an activity is constrained by its applicability which
describes to which type of a design artifact the activity can be applied. You cannot for
example apply Initial RTL Development to an analog block.

Finally, we model co-activities by introducing an ExecutionRelation which allows
restricting the co-execution type between two activities. The problem is that some
activities exchange information and therefore must be executed (partially) in parallel.
For example RTL Debug and RTL Verification need to be executed in parallel as the
verification requires the debugged RTL and the debugging requires the verification
results (see Figure 2b).

5. Concurrency

In a DEDP the activities which do not depend on each other are executed concurrently
in order to reduce the total development time. Additional concurrency can be gained by
accounting more process details (Section 5.1) or by decomposition of blocks (Section
5.2).

Specification

a) Activity Definition b) ExecutionRelation
Initial RTL Dev. RTL Debug Initial RTL Initial RTL

RTL Verification Testcases

c) Plan Example
Specification Initial RTL Dev. Initial RTL RTL Debug RTL

Verification Setup. Testcase RTL Verification Verification Result

d) Increased level of detail
Block Design Synthesis

Final SynthesisSyn. Setup Debug

RTL Dev. RTL Debug

Syn. Setup Trial Synth.

e) Block Decomposition
RTL Development

toplevel sub-blocks

RTL Dev.
RTL Integr.

RTL Dev.

Figure 2. Activity representation and concurrency

5.1. Improving concurrency using finer-grained process model (knowledge base)

One of the methods to allow for increasing the process concurrency is by increasing the
level of detail in the knowledge base. If, at the knowledge base development stage, it is
found out that a meaningful action viewed as an activity can be represented as the
composition of several other activities, the knowledge base should be adjusted
accordingly. Some of these activities may be executed concurrently and their
introduction may therefore add to the concurrency factor. For example, at an early
modeling stage Block Design and Synthesis tasks could be seen as coarse activities
which have to be executed in sequence due to their input/output representations. When
the knowledge base is refined both are modeled by the compositions of several
activities (Figure 2d). After that both tasks can be executed partially in parallel.

Since the majority of design tasks are typical in the industry branch the knowledge
base appears to be a valuable knowledge asset which may be efficiently reused and
transferred.

5.2. Concurrency by block decomposition

Another way to gain improved concurrency is to perform an activity on each sub-block
and integrate the results instead of performing the activity on the whole design. This
also reduces the difficulty of each activity compared to the original one as only the
complexity of the associated sub-block impacts each design activity and the integration
activity depends only on the interconnection of the sub-blocks. Figure 2e shows this
method using the example of RTL Development.

6. The Test Cases: Knowledge Acquisition Using PSI Ontologies

The ontologies were initially evaluated with different test cases. At the beginning
simplified artificial data was used (e.g. [15]). The simulation of DEDPs based on these
simplified initial test cases has been reported in [4]. In this paper we shall report on the
follow-up work with one of the real projects run at Cadence Design Systems, GmbH.

The knowledge acquisition and DEDP modeling scheme for real projects is as
outlined in Figure 3. The project knowledge is first homogenized and formalized. Then
the project definition is extracted. After that the acquired knowledge is used to re-plan
and re-schedule the project by simulations. These results are then compared to the
original plan and schedule developed by the project manager manually. In this paper
we describe the left branch of the routine: starting from the raw sources and ending up
by the project definition (steps 1-3 in Figure 3).

6.1. The Test Case

The test case described here is a real project which created an MMC/SD 5 host
controller Soft IP6. The available input consists of the project plan in the form of a

5 MMC (Multi Media Card) / SD (Secure Digital Card), flash memory card formats.
6 Soft IP (intellectual property) is a predefined functional block which is incorporated in other designs. In

contrast to Hard IP which comes in the form of layout data, Soft IP is delivered as a functional description
which still needs to be mapped to a specific silicon technology.

GANTT-diagram with resource assignments, a block-diagram and a verbal description
of the designers by the project leader. The project was chosen because it is small
enough to be formalized relatively quickly and still contains the typical pitfalls (see
Sections 6.2, 6.3) which were not present in the initial simplified test cases. In detail, it
contains 4 digital blocks and 34 tasks executed by 3 designers. The resulting WBS had
30 activities.

6.2. Formalizing the Design Process Log

The first step in formalizing the project knowledge was the extraction of the required
information from the sources and bringing it to a homogenous representation – a
spreadsheet was used to hold the data. This is the step 1 shown in Figure 3. The main
problem at this step is to associate each task with one particular block of the design.

The resulting process log was incomplete and ambiguous. In the available
knowledge sources, several smaller tasks had been omitted or grouped together in the
project plan to keep the diagram clearer to the manager whereas the bigger ones were
split to show the different facets of a task. There was for example no explicit
verification of one of the functional blocks (register file) as it was always verified in
conjunction with the other blocks. On the other hand, there were several test case
development tasks for the command path - one per command mode. This was mainly
because the project was structured differently than intended by the ontology and the
model. The project leader had grouped the tasks only by their similarity without respect
to the block structure while the model organizes tasks by both aspects and requires a
strict association of tasks to blocks.

6.3. WBS Extraction

The next step was the extraction of a coherent WBS from the log (Figure 3 step 2).
This required the logged tasks to be mapped to activities described in the knowledge
base (Figure 4). If the project contains tasks which cannot be represented with the
activities in the knowledge base, the knowledge base must be extended. In the given
case, activities for FPGA-emulation and coverage analysis were added.

This step required some tasks to be split and others to be merged to remove
simplifications in the original project plan. Consequently, the tasks which had been
omitted in the project plan were introduced at this step to complete the IO-chain.
Finally, the missing data had to be supplemented. This work normally requires the

Testcase

Extracted WBS

Project Definition

Knowledge Base

Generated WBS

Generated Project Plan

WBS

Project
Definition

Project Plan

Common
Knowledge

3

compare

compare

2
1

Extracted Log

Figure 3. Test case knowledge acquisition and usage

profound knowledge of the domain and the project itself and is best done with the help
of the project leader or the designer working on the particular part of the project. In this
particular case the project leader was available as domain expert.

To reuse the previous example, the test case development tasks for the command
path were merged into one activity..The example of splitting a task was the synthesis.
Due to the simplicity of the design the source project plan did not further refine the
synthesis task. But the knowledge base suggested the composition of the four activities
instead - ‘Synthesis Setup’, ‘Trial Synthesis’, ‘Synthesis Setup Debug’ and ‘Final
Synthesis’. Thus, the original task was split in four activities. Finally, small verification
activities applied to the register file were introduced to complete the IO-chain.

6.4. Extracting the Project Definition

This is the last step in the knowledge acquisition routine (Figure 3 step 3). Acquiring
project data like starting date, end date and required output is straight-forward as is the
description of block structure. The assessment and modeling of designers’ abilities and
the complexity of blocks is a rather difficult topic and will be a major part of our future
research. For now we are working with the simplified model and the acquisition is
currently relying on the judgement of the designers only.

7. Conclusions and Future Work

With the current version of the PSI Ontologies we were able to formalize a real life
project and we could even reuse the initial knowledge base with only minimal additions.
This shows that the modeling of activities by their inputs and outputs with a few
additional constraints is feasible and that it is suitable for the application domain of
semiconductor design.

To be able to improve the modeling of dependencies between activities, we still
need to collect a comprehensive set of test cases. With this done, we will concentrate

Toplevel
 …
 Testbench Development
 …

Activity

name: Testbench Development
…

Log Knowledge Base
MaterialInputRep.

name: Testplan

MaterialInputRep.
MaterialOutputRep.

name: Specification
name: Testbench

MaterialInput AssociatedActivity MaterialOutput

name: Testplan of Toplevel name:Testbench Development
of Toplevel
…

name: Testbench of Toplevel

WBS

MaterialInput FunctionalBlock

name: Specification of Toplevel name: Toplevel
…

Figure 4. Task mapping example for Testbench Development

on n

8. References

.: Engineering Design Performance Management – from Alchemy to Science through
ek, R., Mayr, H.C., Liddle, S. (Eds.) Proc. 4th Int. Conf on Information Systems

[2]

ew concepts and properties to create detailed models of the complexity and the
quality requirements of design artifacts, the difficulty of activities, the abilities of
designers and the capabilities of software tools used. In parallel, ongoing work is
focusing on improving the simulation and the evaluation of the results using a growing
testbed and assessing real design systems.

[1] Matzke, W.-E
ISTa. In: Kasch
Technology and its Applications (ISTA’2005), 23-25 May 2005, Palmerston North, New Zealand, p
154-179
Ermolayev, V., Jentzsch, E., Karsayev, O., Keberle, N., Matzke, W.-E., Samoylov, V.: Modeling
Dynamic Engineering Design Processes in PSI. In: J. Akoka et al. (Eds.): ER Workshops 2005, Proc.
Seventh International Bi-Conference Workshop on Agent-Oriented Information Systems (AOIS-2005),
Klagenfurt, Austria, October 24-28, Springer LNCS 3770, pp. 119 – 130, 2005
Ermolayev, V., Jentzsch, E., Keberle, N., Samoylov, V., Sohnius, R.: The Family of PSI Ontologies.
Reference Specification. Technical Report. Cadence Design Systems, GmbH, 47 p., 2006

[3]

[4] Gorodetsky, V., Ermolayev, V., Matzke, W.-E., Jentzsch, E., Karsayev, O., Keberle, N., Samoylov, V.:
Agent-Based Framework for Simulation and Support of Dynamic Engineering Design Processes in PSI.
In: Pechouchek, M., Petta, P., Varga, L. Z. (Eds.) Proc. 4th Int. Central and Eastern European Conf. on
Multi-Agent Systems (CEEMAS'05), 15-17 September 2005, Budapest, Hungary, LNAI 3690, pp. 511-
520, 2005.
Conrad Bock, Michael Gruninger, PSL: A semantic domain for flow models. Software and Systems
Modeling Journal (2005) 4: 209–231 / Digital Object Identifier (DOI) 10.1007/s10270-004-0066-x

[5]

[9]

deling for New

[12]

[6] Workflow Management Coalition. Workflow Standard. Process Definition Interface -- XML Process
Definition Language. V. 2.00, Doc No WFMC-TC-1025 (Final), October 3, 2005

[7] Erik Sandewall, Features and Fluents. The Representation of Knowledge about Dynamical Systems.
Oxford University Press, 1994

[8] Gangemi, A., Guarino, N., Masolo, C., Oltramari, A., Schneider, L.: Sweetening Ontologies with
DOLCE. In: A. Gómez-Pérez , V. Richard Benjamins (Eds.) Knowledge Engineering and Knowledge
Management. Ontologies and the Semantic Web: 13th International Conference, EKAW 2002,
Siguenza, Spain, October 1-4, 2002
Grueninger, M., Atefi, K., Fox, M. S., Ontologies to Support Process Integration in Enterprise
Engineering Computational & Mathematical Organization Theory 6, 381–394, 2000.

[10] Uschold, et al: The Enterprise Ontology. Knowledge Engineering Review, 13(1), 1998
[11] Ermolayev, V. Keberle, N. and Tolok, V.: OIL Ontologies for Collaborative Task Performance in

Coalitions of Self-Interested Actors. In: H. Arisawa, Y. et al (Eds.): Conceptual Mo
Information Systems Technologies ER 2001 Workshops, Yokohama Japan, November 27-30, 2001.
LNCS vol. 2465, 390-402, 2002.
Buhler, P. and Vidal, J.M.: Enacting BPEL4WS specified workflows with multiagent systems. In Proc.
of the Workshop on Web Services and Agent-Based Engineering, 2004

[13] Ermolayev, V., et al: Towards a framework for agent-enabled semantic web service composition. Int. J.
of Web Services Research, 1(3): 63-87, 2004.

[14] Fensel, D. and Bussler, C.: The Web Service Modeling Framework WSMF. Electronic Commerce
Research and Applications 1(2): 113-137, 2002.

[15] Jentzsch, E., Matzke, W.-E.: Case Study of a Digital Design Process. VCAD EMEA Cadence Design
Systems GmbH. May 17, 2004

http://www.aois.org/
http://www.ceemas.org/ceemas05/

	1. Introduction
	2. Related Work
	3. Concurrent Engineering Design Processes in Microelectronics
	Expressing DEDP Knowledge Using PSI Ontologies
	5. Concurrency
	5.1. Improving concurrency using finer-grained process model (knowledge base)
	5.2. Concurrency by block decomposition
	6. The Test Cases: Knowledge Acquisition Using PSI Ontologies
	6.1. The Test Case
	Formalizing the Design Process Log
	6.3. WBS Extraction
	6.4. Extracting the Project Definition

	7. Conclusions and Future Work
	8. References

