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Abstract. This paper presents our work in collecting and formalizing data about 
dynamic engineering design processes in microelectronics design projects. The 
paper reports on our experience in evaluating the design process knowledge 
acquisition routine by applying it to the real industrial project of Cadence Design 
Systems, GmbH. The methodology is based on the usage of the ontologies 
developed in the PSI project. Beside the actual process of formalizing the 
processes it especially focuses on capturing information about the concurrency 
among activities. 

Keywords. Concurrent activities, Dynamic Engineering Design Process, ontology, 
agent, multi-agent system, knowledge acquisition, microelectronics 

1. Introduction 

It is well known that the design of microelectronic devices gets more and more 
complex 1  and to keep the design time and cost of such devices in reasonable 
boundaries, the productivity must be increased. Cadence Design Systems GmbH 
started the Performance Simulation Initiative (PSI) to help customers in finding and 
improving the weak spots in their design processes [1] and thereby increasing 
productivity. The approach is to examine dynamic engineering design processes 
(DEDPs) [2] by acquiring knowledge about them using a family of OWL2 ontologies 
[2][3], and to employ the multi-agent system approach to simulate them [4]. The 
simulation results can then be used to assess past projects and to analyze how to 
optimize a given design system for future projects. 

In this paper we focus on the methodology of acquiring and formalizing the 
information about DEDPs required for simulation using the PSI Ontologies. The paper 
is structured as follows: Section 2 surveys the related work in this field; Section 3 
describes the general properties of design processes; Section 4 gives an overview of the 
ontologies used; Section 5 presents the different aspects of concurrency encountered; 
Section 6 explains the formalization process based on an example test case; Section 7 
contains the conclusions and the plans for future work. 

                                                           
1 Moore’s law: every 18 months the processing power (of the product) doubles while cost holds constant. 
2 Web Ontology Language (OWL): http://www.w3.org/TR/owl-ref/ 



2. Related Work 

The mainstream of formal business process modeling and engineering today is using 
PSL [5], PDL [6] or their extensions. Unfortunately, these formal flow modeling 
frameworks do not fully allow breaking down the diversity of the processes 
encountered in real life. This diversity may be characterized for example by 
Sandewall’s taxonomy [7] providing the basic features of the processes. This 
classification embraces highly predictable, normal, manufacturing processes at one side 
and stochastic (“surprising” 3 ), structurally ramified, time-bound processes 
characteristic for design domain, on the other side of the spectrum.  

In our search for the proper upper-level ontological paradigm for DEDP modeling 
we examined the SUMO and DOLCE [8] ontologies as candidates for the formal 
description framework. In DOLCE a process is the sub-category of a perdurant. 
Perdurants also comprise events, phenomena, activities, and states. The semantics of a 
DEDP in our framework is aligned with DOLCE in this sense. However, we consider 
DEDPs to be the aggregations of the simpler occurrences: sub-processes, events, states, 
activities. As in DOLCE we assume that subjects and objects are not parts of processes, 
but rather participate in them or are transformed by them.  

The conceptual framework and the PSI family of ontologies [3] used to model 
DEDPs are the follow-up of our results published in [2]. The DEDP modeling 
framework in its part of organizational and actor-related knowledge representation is 
based on the frameworks [9][10][11], extends them by incorporation of roles, abilities, 
actors, dynamic teams of actors, and its binds to the engineering design domain. In the 
part of process modeling PSI bases its approach on [12], [13], [14]. One advancement 
of the PSI ontologies family is the classification of the concurrency types as the co-
execution types [3]: sequential, partially overlapping at start (end), inner overlapping, 
parallel.  

3. Concurrent Engineering Design Processes in Microelectronics 

The processes of designing microelectronic devices tend to be executed as parallely as 
possible. The design tasks are too time-consuming to be executed in sequence since 
time to market is one of the critical aspects of the process. Especially in the consumer 
electronic space, certain deadlines (e.g. Christmas) must be met to survive in business. 
In order to be able to exploit concurrency where possible, it is essential to model the 
dependencies between tasks as detailed as possible. 

Another important aspect of these design processes is the lack of predictability. No 
two devices are designed exactly the same. Therefore, the simulation can only give an 
approximate estimation of a process flow and the time it requires. As a result, it has to 
be able to adapt as the dynamic system develops. We use DEDP-MAS [4] to simulate 
human-like behaviour and to provide the required flexibility. 

According to Sandewall’s taxonomy [7] a DEDP may be considered a discrete, 
branching, structurally ramified, concurrent, surprising, equinormal, hierarchical, 
time- and memory-bound process with delayed effects.  This combination of the 
features makes DEDP modeling a challenging task. The starting point for our modeling 

                                                           
3 A process is considered “surprising” if it is allowed that a surprising or exogenous event may cause a 

change that is not anticipated by the process script [7]. 



framework was the observation that an arbitrary engineering design process is the 
configuration of the following basic building blocks: a goal (the state of affairs to be 
reached); an action; an object to apply actions to; a subject who (or which, if 
unanimated) applies actions to objects; an instrument to be used by a subject to execute 
actions; and an environment in which the process occurs. This structure at the first 
glance resembles the one of PDI (Process Definition Interface [6]). 

4. Expressing DEDP Knowledge Using PSI Ontologies 

The PSI family of ontologies comprises five tightly linked ontologies which in UML 
representation are grouped in separate packages: the Actor Ontology (a subject), the 
DEDP Ontology (an environment), the Task-Activity Ontology (an action), the 
Software Tool Ontology (an instrument), and the Design Artifact Ontology (a goal and 
an object). The classes shown within the packages in Figure 1 identify the major 
concepts of the respective ontology [3]. 

The instances created using the ontologies are grouped by their level of abstraction. 
The most abstract level is the knowledge base. It contains the information on the types 
of design artifacts that can exist and the activities that can be executed on these design 
artifacts. This level is also considered common knowledge and is the same for all 
projects examined. The next less abstract level is the project definition. It comprises all 
the knowledge and data required to simulate the project: the structure of the design 
artifact, the design team, its members and their skills, the available resources, the 
desired project output and the time frame. Finally, the last level is the project plan. It 
contains all the activities executed (or to be executed), their schedule and the 
assignment of the designers and the resources to them. 

One of the facets of activity descriptions used in PSI (unlike PSL [5] or TOVE [9]) 
is the description using the design artifact input and output representations. An activity 
transforms a design artifact from one representation to another. For example Initial 
RTL4 Development transforms a functional block in the representation Specification to 

                                                           
4 RTL (Register Transfer Level), functional description of a digital block in terms of logical and sequential 
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the representation Initial RTL (see Figure 2a). Therefore, the simulation does not rely 
on predefined plans but can link activities by the representations of their inputs and 
outputs (see Figure 2c) to build a graph which shows every possible way from the 
initial input representations to the target output representations and can then choose the 
optimal one. Activities have a property difficulty which is used to estimate the required 
design time. The result of the linking of input representations to output representations 
is called the IO-chain. 

Additionally, the appearance of an activity is constrained by its applicability which 
describes to which type of a design artifact the activity can be applied. You cannot for 
example apply Initial RTL Development to an analog block. 

Finally, we model co-activities by introducing an ExecutionRelation which allows 
restricting the co-execution type between two activities. The problem is that some 
activities exchange information and therefore must be executed (partially) in parallel. 
For example RTL Debug and RTL Verification need to be executed in parallel as the 
verification requires the debugged RTL and the debugging requires the verification 
results (see Figure 2b). 

5. Concurrency 

In a DEDP the activities which do not depend on each other are executed concurrently 
in order to reduce the total development time. Additional concurrency can be gained by 
accounting more process details (Section 5.1) or by decomposition of blocks (Section 
5.2). 
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5.1.  Improving concurrency using finer-grained process model (knowledge base) 

One of the methods to allow for increasing the process concurrency is by increasing the 
level of detail in the knowledge base. If, at the knowledge base development stage, it is 
found out that a meaningful action viewed as an activity can be represented as the 
composition of several other activities, the knowledge base should be adjusted 
accordingly. Some of these activities may be executed concurrently and their 
introduction may therefore add to the concurrency factor. For example, at an early 
modeling stage Block Design and Synthesis tasks could be seen as coarse activities 
which have to be executed in sequence due to their input/output representations. When 
the knowledge base is refined both are modeled by the compositions of several 
activities (Figure 2d). After that both tasks can be executed partially in parallel. 

Since the majority of design tasks are typical in the industry branch the knowledge 
base appears to be a valuable knowledge asset which may be efficiently reused and 
transferred. 

5.2. Concurrency by block decomposition 

Another way to gain improved concurrency is to perform an activity on each sub-block 
and integrate the results instead of performing the activity on the whole design. This 
also reduces the difficulty of each activity compared to the original one as only the 
complexity of the associated sub-block impacts each design activity and the integration 
activity depends only on the interconnection of the sub-blocks. Figure 2e shows this 
method using the example of RTL Development. 

6. The Test Cases: Knowledge Acquisition Using PSI Ontologies 

The ontologies were initially evaluated with different test cases. At the beginning 
simplified artificial data was used (e.g. [15]). The simulation of DEDPs based on these 
simplified initial test cases has been reported in [4]. In this paper we shall report on the 
follow-up work with one of the real projects run at Cadence Design Systems, GmbH. 

The knowledge acquisition and DEDP modeling scheme for real projects is as 
outlined in Figure 3. The project knowledge is first homogenized and formalized. Then 
the project definition is extracted. After that the acquired knowledge is used to re-plan 
and re-schedule the project by simulations. These results are then compared to the 
original plan and schedule developed by the project manager manually. In this paper 
we describe the left branch of the routine: starting from the raw sources and ending up 
by the project definition (steps 1-3 in Figure 3). 

6.1. The Test Case 

The test case described here is a real project which created an MMC/SD 5  host 
controller Soft IP6.  The available input consists of the project plan in the form of a 

                                                           
5 MMC (Multi Media Card) / SD (Secure Digital Card), flash memory card formats. 
6 Soft IP (intellectual property) is a predefined functional block which is incorporated in other designs. In 

contrast to Hard IP which comes in the form of layout data, Soft IP is delivered as a functional description 
which still needs to be mapped to a specific silicon technology. 



GANTT-diagram with resource assignments, a block-diagram and a verbal description 
of the designers by the project leader. The project was chosen because it is small 
enough to be formalized relatively quickly and still contains the typical pitfalls (see 
Sections 6.2, 6.3) which were not present in the initial simplified test cases. In detail, it 
contains 4 digital blocks and 34 tasks executed by 3 designers. The resulting WBS had 
30 activities. 

6.2. Formalizing the Design Process Log 

The first step in formalizing the project knowledge was the extraction of the required 
information from the sources and bringing it to a homogenous representation – a 
spreadsheet was used to hold the data. This is the step 1 shown in Figure 3. The main 
problem at this step is to associate each task with one particular block of the design. 

The resulting process log was incomplete and ambiguous. In the available 
knowledge sources, several smaller tasks had been omitted or grouped together in the 
project plan to keep the diagram clearer to the manager whereas the bigger ones were 
split to show the different facets of a task. There was for example no explicit 
verification of one of the functional blocks (register file) as it was always verified in 
conjunction with the other blocks. On the other hand, there were several test case 
development tasks for the command path - one per command mode. This was mainly 
because the project was structured differently than intended by the ontology and the 
model. The project leader had grouped the tasks only by their similarity without respect 
to the block structure while the model organizes tasks by both aspects and requires a 
strict association of tasks to blocks. 

6.3. WBS Extraction 

The next step was the extraction of a coherent WBS from the log (Figure 3 step 2). 
This required the logged tasks to be mapped to activities described in the knowledge 
base (Figure 4). If the project contains tasks which cannot be represented with the 
activities in the knowledge base, the knowledge base must be extended. In the given 
case, activities for FPGA-emulation and coverage analysis were added. 

This step required some tasks to be split and others to be merged to remove 
simplifications in the original project plan. Consequently, the tasks which had been 
omitted in the project plan were introduced at this step to complete the IO-chain. 
Finally, the missing data had to be supplemented. This work normally requires the 
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profound knowledge of the domain and the project itself and is best done with the help 
of the project leader or the designer working on the particular part of the project. In this 
particular case the project leader was available as domain expert. 

To reuse the previous example, the test case development tasks for the command 
path were merged into one activity..The example of splitting a task was the synthesis. 
Due to the simplicity of the design the source project plan did not further refine the 
synthesis task. But the knowledge base suggested the composition of the four activities 
instead - ‘Synthesis Setup’, ‘Trial Synthesis’, ‘Synthesis Setup Debug’ and ‘Final 
Synthesis’. Thus, the original task was split in four activities. Finally, small verification 
activities applied to the register file were introduced to complete the IO-chain. 

6.4. Extracting the Project Definition 

This is the last step in the knowledge acquisition routine (Figure 3 step 3). Acquiring 
project data like starting date, end date and required output is straight-forward as is the 
description of block structure. The assessment and modeling of designers’ abilities and 
the complexity of blocks is a rather difficult topic and will be a major part of our future 
research. For now we are working with the simplified model and the acquisition is 
currently relying on the judgement of the designers only. 

7. Conclusions and Future Work 

With the current version of the PSI Ontologies we were able to formalize a real life 
project and we could even reuse the initial knowledge base with only minimal additions. 
This shows that the modeling of activities by their inputs and outputs with a few 
additional constraints is feasible and that it is suitable for the application domain of 
semiconductor design. 

To be able to improve the modeling of dependencies between activities, we still 
need to collect a comprehensive set of test cases. With this done, we will concentrate 
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