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Abstract: The paper presents the approach for modeling actions in the dynamic 
processes of engineering design in Microelectronics and Integrated Circuits 
domain. It elaborates the formal framework for representing processes, the 
states of these processes and process environments, the actions being the 
constituents of the processes. Presented framework is implemented as the part 
of PSI Suite of Ontologies and is evaluated using three different methods: user 
evaluation, formal evaluation, and commonsense evaluation following PSI 
shaker modeling methodology. The Suite of PSI ontologies is used for 
representing Dynamic Engineering Design Processes in Cadence Project 
Planning Expert System software prototype.    

1 Introduction 

As many experts in microelectronic and integrated circuits design point out (e.g., [1]), 
one of the main industrial challenges is the gap between the capability of design 
technology and the productivity of design systems. For example, the capability of the 
design technology to accommodate digital gates on a chip is growing much faster than 
the capability of design teams using this technology and corresponding design 
environments to produce these gates in their designs. The consequence is that the 
effort required to be spent for designing a typical microelectronic device is growing 
substantially. Therefore, tools and methodologies for improving the performance of 
design systems are very highly demanded by industry. 

PSI project1 aims at developing models, methodologies, and software tools 
providing for rigorous engineering treatment of performance and performance 
management. PSI performance modeling and management approach focuses on 
performance as a pro-active action. A fine-grained dynamic model of an engineering 
design process, comprising a semantically rich action model, and a design system is 

                                                           
1 Performance Simulation Initiative (PSI) is the R&D project of Cadence Design Systems 

GmbH. 
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therefore developed. PSI approach considers that performance is embodied in its 
environment and is controlled by the associated performance management process. 

An engineering design process is a goal-directed process of transforming the 
representations of a design artifact in stateful nested environments. An environment 
comprises design artifact representations, resources, tools, and actors who perform 
actions to transform design artifacts using tools, consume resources. Actions are 
admissible in particular environment states and may be atomic or compound, state-
transitive or iterative, dependent or independent on other actions. The components of 
an environment may generate internal events or may be influenced by external events. 
Events may have causal dependencies.  An engineering design process is a problem 
solving process which goals, partial goals, and environments may change 
dynamically. A decision taking procedure is associated with each state to allow 
environments adjust the process taking these changes into account. Decisions are 
taken by actors modeled by software agents.  

PSI software tools are developed [2] for assisting project managers to make robust 
planning, monitoring, and management of their design projects aiming at reaching 
best possible performance. Grounded decisions in planning are based on the 
knowledge base of project logs accomplished in the past. These logs provide vast and 
finely grained records of the performance of accomplished projects and may be used 
for simulating the behavior of the design system in response to different influences. 
At project execution phase PSI software may be used for predicting the behavior of 
the design system in the future based on the record of the partially accomplished 
Dynamic Engineering Design Process (DEDP), the knowledge about its 
environment(s), and performance simulations. 

The focus of this paper is the framework for modeling actions. The rest of the 
paper is structured as follows. Section 2 analyses the related work in process 
modeling emphasizing the ways to model dynamic processes and pointing out the 
advancement of the presented modeling approach. Section 3 presents the action 
modeling framework of PSI. Section 4 reports how the framework has been 
implemented as the part of PSI Suite of Ontologies, evaluated, and used in PSI Project 
Planning Expert System. Finally, concluding remarks are given and our plans for 
future work are outlined in Section 5.    

2 Related Work  

The framework presented in this paper is for modeling change and adequately 
accounting for dynamics in the processes of engineering design. Fundamentally, 
research in representing, reasoning, and capturing knowledge about change and 
dynamics produced the plethora of premium quality results which can’t be even listed 
here due to space limit. Instead, we point to [3] as an excellent reference source. We 
also mention several related sources for analyzing our contribution.  

McCarthy and Hayes [4] were the pioneers in introducing a logical formalism 
which became a mainstream for commonsense reasoning and reasoning about change 
in particular – the Situation Calculus (SC).  Several authors have further developed 
this approach resulting in several Event Calculi (EC) [5, 6]. Most of them use linear 
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time instead of branching time characteristic to the SC. A topical representative of a 
branching time logic approach is [7]. Our approach is particularly close to DEC [8] 
because DEC uses discrete linear time representation. In difference to the mentioned 
EC our framework uses discrete linear time and time intervals with fuzzy beginnings 
and endings [9]. This enhancement makes our representation of events [10] and 
actions more flexible and expressive.  For all other desired representational 
capabilities like causality, event triggering, context sensitivity, delays in effects, 
concurrency, release from the law of inertia [11] we rely on [8]. Some of these have 
already been accounted for: causality, triggering, delays. Elaboration of the rest is 
planned for the future work.  
The mainstream of formal business process modeling and engineering today is using 
PSL [12], PDL [13] or their extensions. Unfortunately, these formal process modeling 
frameworks do not fully allow breaking down the diversity of the processes 
encountered in real life. This diversity may be characterized for example by 
Sandewall’s taxonomy [11] of the basic features of the processes. This classification 
embraces highly predictable, normal, manufacturing processes at one side and 
stochastic (“surprising”2), structurally ramified, time-bound processes characteristic 
for design domain, on the other side of the spectrum.  

Presented modeling framework and the PSI Suite of Ontologies are the follow-up 
of our results published in [14]. The DEDP modeling framework in its part of process 
modeling bases its approach on [15-17]. The advancements of PSI approach are: (i) a 
rich typology of actions; (ii) environmentalistic approach to model processes, actions, 
their dependencies comprising concurrency; (iii) a state model refined using decision 
making mechanism and requirement sensitivity; (iv) an explicit difference between 
events and actions.   

To the best of our knowledge, existing frameworks do not specify the difference 
between events and actions, except stating that actions are a kind of events: “the most 
important events are actions, and for a program to plan intelligently, it must be able to 
determine the effects of its own actions…” [cf. 18]. Such a view underestimates the 
role of events which occur without the involvement of an actor and the influence of 
those events on the environments of actions. Indeed, if we consider a person 
accidentally falling out from a window, this event can hardly be qualified as an action 
– the person had no purpose for or intention of falling out. He did not desire reaching 
this uncomfortable situation. The refinement proposed in PSI [19, 20] is that 
processes (compound actions) subsume to events, while atomic actions do that not. 
Atomic actions are a specific kind of an instrument for agents to pro-actively apply 
changes to their environment(s). In that sense a happening is an atomic action and is 
not an event because it is an instrument for an observer to perceive the changes in 
observer’s environment. An observer will perceive the event only if he intends to. 
However, an event occurs irrespectively to somebody’s perception or intent.      

Our analysis of the variety of foundational ontologies [21] has revealed that the 
best matching ontological foundation for DEDP modeling is DOLCE [22] and the 
most appropriate referential commonsense theory is SUMO [23] extended by 
WordNet [24].  The semantics of our representation of actions, events, and 

                                                           
2 A process is considered “surprising” if it is allowed that a surprising or exogenous event may cause a 

change that is not anticipated by the process script [11]. 



4        

environments is aligned with DOLCE through the PSI Upper-Level Ontology [21]. 
The concepts of PSI Process Ontology are mapped to SUMO through PSI Upper-
Level Ontology and WordNet using subsumptions. 

3 Action Modeling Framework of PSI 

A DEDP is the process of goal-directed (pro-active) transformation of a Design 
Artifact. A DEDP usually begins with collecting the initial available inputs (like the 
requirements, the high-level specification), continues in a sequence of stages normally 
defined by the Design System, and ends up with the Design Artifact in a form which 
meets the goal of the design. These stages are the Actions applied to a Design 
Artifact. Actions are distinct because they affect a Design Artifact differently by 
applying different changes (transformations) or causing no tangible change at all. 
Actions may be grouped in different combinations like sequences, branching 
structures, alternative or concurrent paths.  

3.1 Preliminaries 

A Design Artifact (DA) is a tangible product that is being designed in a DEDP. A DA 
may be a single indivisible design object or a hierarchical composition of design 
objects having the same or different types. A DA, and every design object in a DA, is 
incrementally elaborated as the emerging set of its Representations. A DA 
Representation is the implementation of a DA in a particular form, format, or notation 
in which the DA is used for a distinctive purpose.  

There exists only a partial order among DA Representation Types and respective 
DA Representations. The semantics of this partial order is that a Representation Rm 
which precedes another Representation Rn is more abstract, while Rn is more 
elaborated. The distance between two Representations Rm and Rn may also be of 
interest. Indeed, a question about how MUCH is Rn more elaborated (or more 
abstract) than Rm is important because the answer characterizes the Difficulty of the 
transformation of a DA between those Representations. Difficulty is understood as the 
amount of abstraction crossed by a transformation. As transformations are applied by 
Actions, Difficulty (and distance) is somehow reflected by the effort to be spent for an 
Action. 

In any combination, Actions lead processes to particular States. The simplest 
possible DEDP may be described by specifying its initial (triggering) influence, its 
initial State, its Action, its target State, and the change in the Design Artifact caused 
by the specified Action and reached in the target State.  A more complex DEDP may 
comprise both atomic and compound Actions. Hence, in a general case, a DEDP 
description should also contain the specification of its intermediate States. A DEDP 
State is a State S of DEDP environment which is characterized by the set of the pre-
requisites for the associated Actions. These pre-requisites are either the Events [10] 
which, if perceived as happenings [10], trigger influences that change the course of 
Action, the DA Representations which are required for an Action, or their 
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combination. A DEDP State is the state of affairs in which a decision to perform one 
of the admisible Actions (for example, to cease the process) is to be made:  

>=< ),,, ARE sDS , (1) 
where: E is the set of associated Events, R is the set of associated DA 
Representations, Ds is the mechanism to make the decision to take a certain associated 
Action, A is the set of admissible Actions.   

A DA Representation R which is unconditionally available after a State S is 
reached is the Characteristic Representation of this State and belongs to the set ℜ of 
Characteristic Representations of this State. 

Further on, to find out if a DA Representation is really the thing we wanted to 
receive, the characteristics of the DA Representation are verified against the 
requirements. For simplicity reasons only independent characteristics are taken into 
account. An Independent Characteristic c is the property of a DA Representation 
which may be measured as recommended by the Design System independently of the 
other Characteristics. The set of Independent Characteristics of a DA Representation 
is denoted as },...{ 1 ncc=C . A Requirement },{: falsetrue→Cρ  is the Boolean 

function of the Independent Characteristics of a DA Representation. Provided that 
Requirements are defined for a DA Representation, the degree of the success of an 
Action elaborating the DA Representation could be measured. If an Action was 
successful enough, the corresponding state may be considered as achieved. Otherwise, 
a Corrective Action should be taken to improve the result. Hence, the difficulty of an 
Action is the function of the Requirements to its Target DA Representation.  

Requirements to the same DA Representation may differ in different phases of a 
DEDP. For example, the Characteristic of the density of the elements on the 
integrated circuit becomes really important at a Place and Route phase, though 
accounted for more liberally at earlier phases. Hence, a Requirement is the attribute of 
a DA Representation in a certain DEDP State. Requirements may be changed when a 
DEDP is already being executed. Such (events of) late changes to the Requirements 
may result in unpredictable changes in the DEDP. If ],0[ TT = is the life time of a 
DEDP then a Dynamic Requirement ],0[},,{:)( Ttfalsetruet ∈→Cρ  is a 

Requirement which may be changed during the life time of a DEDP, otherwise it is a 
Static Requirement.  

Accounting for the Requirements implies the changes in the model of a State. A 
ρ -sensitive State is a DEDP State in which DA Representations are constrained by a 

non-empty set of  Requirements },...,{ 1 nρρ=Ρ , which may be Static or Dynamic: 

>=< ),,,, AΡRE sDS . (2) 

One important kind of a Requirement is a Quality Requirement. Such 
Requirements are based on the Characteristics measured as prescribed by the used 
Quality Model. 

3.2 Action Kinds 

While modeling Actions it is important to pay attention to the following characteristic 
features: (i) is an Action simple or compound? (ii) Does an Action transit a DEDP to 
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a different State? (iii) What are the changes applied to the Design Artifact? (iv) What 
are the dependencies among certain Actions?  

Compound and Atomic Actions. Actors may have different understanding of the 
Actions in a DEDP (Fig. 1). Some of them, according to their Role, prefer to operate 
high-level Actions. For example, a Project Manager may find more appropriate to 
specify only high-level Actions in the project plan, like Front-End Design and Back-
End Design. The others may tend to go deeper in the details of the Actions. A Front-
End Designer will definitely notice that a high-level Front-End Design comprises 
several lower-level Actions, like RTL Development, Testbench Development, etc. 
Therefore, from the different facets of understanding a DEDP by different Actors 
playing different Roles one may deduce the hierarchical structure of the Actions in a 
DEDP3. It is however important to find out if there are the basic building blocks for 
these Actions – the ones which are understood as indivisible, i.e., atomic, by all the 
Actors in a Design System. It is rational to consider that such atomic Actions exist 
and are defined by the Design Technology used within the Design System. Such 
atomic Actions are further on referred to as Activities. 

Definition 1: – an Activity. An Activity is a basic indivisible (atomic) Action 
which is allowed, supported, and provided by a Design Technology. An Activity is 
the only Action which is executed and applies the atomic chunk of the transformation 
to a Design Artifact.  

Compound Actions are the parts of a DEDP which are shrunk into one edge for 
convenience and the proper representation for different Roles. These composite 
Actions are denoted as Tasks.  

Definition 2: – a Task. A Task is a Compound Action which may be represented 
as the composition of the other Tasks and Activities. Such representations are 
different in the knowledge of different Actors.  

As shown in Fig. 1, Tasks may contain several Transformation Paths.  
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Fig. 1. Compound and atomic actions as subjective views of different Actors. 

                                                           
3 Like in a project plan. Indeed, the Actions in a project plan are often presented in a hierarchy.  
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State-Transitive Actions. A DEDP transits to a new state when the pre-requisites 
for such a transition are met. These pre-requisites are: (i) events which indirectly 
trigger an Action or (ii) the availability of Characteristic DA Representations for the 
target DEDP State. For clarity we shall consider the Events occurring outside of 
DEDP environment and the Events generated within the Environment of a DEDP as 
separate kinds of Events –external and internal ones.  

An Action will transit a DEDP to a new state S if DA Representations produced by 
this Action “complete” the set ℜ  of the Characteristic Representations of S. 
According to the classification of the results of Actions, the following types of 
Actions may result in DEDP State transition because they produce new DA 
Representations: Productive Actions, Decomposition and Integration Actions. 

It can not be expected that external events occur in a controllable manner. 
Therefore, unexpected happenings and appropriate reactions to them in the form of 
influences should be accounted for. External events may or may not be perceived by 
the Actors in DEDP environment. External events may cause environmental changes 
of different magnitude. We shall say that an environment is stable with respect to a 
particular external event if the change caused by this event is negligibly subtle. On the 
contrary, the environment is not stable with respect to a particular external event if the 
magnitude of the incurred change is substantial. By saying “substantial” we mean that 
the magnitude of the change4 requires that a corrective action is applied to the DEDP. 
In the latter case it is important to ensure that such an event is perceived and the 
influence is generated to execute required corrective actions. For the sake of 
uniformity and simplicity we shall consider a forced change of DEDP state as the 
only possible type of a corrective action. The examples of different kinds of events 
are pictured in Fig. 2.  
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Fig. 2. Different kinds of External Events causing DEDP State transitions. 

Possible kinds of internal Events are pictured in Fig. 2. These Events are generated 
by the components of the Environment [10] of a DEDP – the Design System.  

An Actor executing an action becomes unavailable. Possible reactions: (i) action 
suspension until the actor becomes available; (ii) actor substitution – no influence to 

                                                           
4 Corresponding thresholds should be found out experimentally when calibrating the model of 

the Design System 
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DEDP; (ii) corrective action changing DEDP state and choosing a different 
Transformation Path executed by a different actor. 

A Resource consumed in the Action becomes unavailable. Possible reactions: (i) 
action suspension until the resource becomes available; (ii) resource substitution – no 
influence to DEDP; (iii) corrective action changing DEDP state and choosing a 
different Transformation Path where the resource is not consumed. 

The requirements to a DA Representation have no chance to be met if the chosen 
Iterative Action is continued. Possible reaction: rolling back to the previous DEDP 
state and choosing a different Transformation Path.  

A DEDP has reached its Target State St and all the requirements to the 
Characteristic DA Representations of St are met.  

In the latest case a Cessation Action terminating the DEDP in success has to be 
applied. In all other cases either a change in the environment (like actor substitution 
or resource substitution) is sufficient or an action is decided to be suspended. 
Otherwise, a corrective action should be taken to choose a different Transformation 
Path in the process.  

Corrective Actions. In a DEDP some Transformation Paths may be more risky 
than the others. Indeed, when for example a Design System transits to a new design 
technology, the correlations among the Requirements are not very well understood. 
The assessments of the quality provided by Actions are not well grounded. If these 
settings are complicated by the dynamic factors an Action on a chosen 
Transformation Path may unexpectedly result in missing the Requirements to a 
Characteristic DA Representation. Though Iterative Actions may help further 
elaborating or refining the representation, there might be a situation in which the 
refinement is not possible using available Actions. A Corrective Action may improve 
such a situation by: (i) rolling-back the Transformation Path to the nearest successful 
State or (ii) choosing the next-most productive Transformation Path as the back-up 
plan  Corrective Actions may also be used as a mechanism of collecting facts on bad 
experience to make risk assessments more grounded in the future. 

Iterative Actions. Some types of Actions will iterate a DEDP in a ρ -sensitive 
State S if Characteristic DA Representations of S do not meet the set of Requirements 

},...,{ 1 nρρ=Ρ of State S, i.e. at least one of the requirement functions ρ  is false. 

Moreover, only such types of Actions may be triggered by SD until the requirements 

are met. These types of Actions are: Refinement Actions, Elaboration Actions, De-
bugging Actions, Verification Actions. A SD  may detect that several iterative 

Actions should be performed at a certain phase of iterations at State S. By the analogy 
to productions-based inference engines these Actions may be considered to be in a 
conflict set. The conflicts may be resolved by: (i) analyzing the dependencies among 
the Actions in the conflict set; and (ii) Assigning priorities to the (types of) 
independent Actions.  

Cessation Actions. The difference between a Corrective Action and a Cessation 
Action is that a Corrective Action transits a DEDP to its State, though different from 
the previous one, but a Cessation Action terminates a DEDP – i.e., moves it out of the 
State Space. A Cessation Action may terminate a DEDP in success or in failure. 
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3.3 Dependencies and Concurrency  

As emphasized by many authors, for example [25], best performance is achieved 
when the best achievable degree of coherence among the actions within a process is 
granted. Coherence among actions means several important things: (i) coherence in 
individual goals of different actors performing different actions in one process; (ii) 
proper distribution of the consumption of available resources in different actions; (iii) 
balance in the capacities of the tools used in different actions; (iv) appropriateness of 
the skills of the Actors to the requirements of the actions assigned to these Actors; (v) 
proper scheduling of the actions which use the results produced by other actions. All 
these aspects represent dependencies among actions. Hence, achieving coherence 
among these actions can be reached by coordination, which is the routine of 
“managing the interdependencies between activities” (cf. [26]). Therefore, a model of 
inter-action dependencies should account not only for the direct dependencies of 
actions on the results of other actions (the latter case (v)), but for a broader variety of 
indirect dependencies (at least cases (i)–(iv)) revealed through the process 
environment. Generally speaking, action A3 depends on another action A1 when the 
post-effects of A1 change the pre-requisites of A3. This dependency may be denoted in 
the terms of a DEDP State, an event, a happening, and an influence.  

Let S1, S2 be ρ -sensitive States (2).  

Definition 3: - an action-related part of DEDP environment.  
1AΣ = {R1, AC1, 

RT1} is the part of DEDP environment related to A1 if: 
– The execution of any action A associated with S1 generates internal events 

changing the constituents of Σ1, or 

– The occurrence of any external event E changing 
1AΣ , if percieved by a member 

of AC1, may change the course of actions associated with S1 by influencing these 
actions at their execution time 

The constituents of 
1AΣ are (Fig. 3): 

R1={R1, R2, …, R4} – the set of DA Representations available in S1 and (if any) 
produced to reach S2 

AC1=(Ac1, Ac2, …, Acm) – the set of actors capable of executing A1 associated 
with S1 and available at the time when A1 has to be commenced 

RT1 – the pool of resources consumed by and tools used in A1 associated with S1 
 

 

EDP Environment 
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R1

pre
1RT

S1 

1AΣ
S2 

 
  

pre
1AC ={         } 

A1 

post
1RT

R4
R3

 
  

post
1AC ={          } 

post-effects of A1 pre-requisites of A1 

 

Fig. 3. A part of DEDP environment (
1AΣ ) related to action A1. 
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It is important to note that, according to Definition 3, if an action (A1) causes state 

transition (S1 to S2), then post
A

pre
AA 111

Σ∪Σ=Σ comprises both the pre-requisites of A1 

and the post-effects of A1. Some of these pre-requisites are not associated with DEDP 

states, like pre
1AC and pre

1RT . Others belong to S1, like },,{ 3211 RRRpre =R .  Some of 

the post-effects are also state-independent: post
1AC and post

1RT containing those 

elements that have been changed by A1. These changes may be in the availability of 
actors, resources and tools and the capability of actors. Other post-effects belong to 

the target DEDP state S2: }{ 41 Rpost =R . These post-effects also contain changed DA 

representations only.  
If A1 does not cause the transition of the process to a different DEDP state, the 

configuration of post
A

pre
AA 111

Σ∪Σ=Σ still remain similar to the previous case. The only 

difference is that }{ 41 Rpost =R belongs to the same DEDP state (S1).   

Let A1 be an action causing the transition of the DEDP to DEDP State S2, A3 be an 
action associated with DEDP State S3.  

Definition 4: – a dependency. A3 depends on A1, if ∅≠Σ∩Σ post
A

pre
A 13

, otherwise A3 

and A1 are independent.  
Following [27] we shall classify dependencies as weak and strong. Action A3 is 

strongly dependent on action A1 if the execution of A3 could not be started until A1 is 
accomplished and its goal is fully met. Having in mind that the goal of an action in a 
DEDP is reaching the DEDP state in which all the required DA Representations are 
made available, we may denote strong dependency as follows. 

Definition 5: – a strong dependency. A3 strongly depends on A1 if 
postpost

A
pre
A 113

R⊆Σ′=Σ∩Σ  

Please note that Definition 5 holds true also if A1 is not a state transitive action. 
Definition 6: – a weak dependency. A3 weakly depends on A1 if:  

(i) postpost
A

post
A

pre
A 1\

113
RΣ⊆Σ′=Σ∩Σ – environmental dependency, or  

(ii) postpost
A

post
A 313

R⊆Σ′=Σ∩Σ – facilitation dependency 

According to Definition 6 environmental dependencies (i) are caused by sharing 
the pool of actors, the pool of tools, consuming the same resources, or by the 
combination of these reasons. These dependencies normally indicate that actions are 
competitive. On the contrary, facilitation dependencies (ii) indicate that actions are 
cooperative. Indeed, the interpretation of (ii) is as follows: A1, facilitates A3 in 
reaching its goal because it elaborates some part of the set of DA Representations 

post
3R . 

Accounting for action dependencies may help building better DEDP schedules thus 
improving their performance properties.  

Concurrency among actions is one more aspect which may influence temporal 
properties of DEDP performance. It is evident that gaining more concurrency among 
the actions in a DEDP may result in shorter schedules and shorter execution times. 
Even partial overlaps in time intervals of action execution may optimize the overall 
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performance. Unfortunately, it is not possible to execute all the actions in a DEDP in 
parallel or partly in parallel because of their dependencies.  

Let, according to [9], 
1AI be the fuzzy time interval of the execution of A1 and

3AI be 

the fuzzy time interval of the execution of A3. Then the following definitions of full 
and partial concurrency among two different actions hold true.   

Definition 7: – full concurrency. Action A1 is fully concurrent to action A3 if 
),(),(

3131 AAAA IIWithinIISame ∨ . 

Definition 8: – partial concurrency. Action A1 is partially concurrent to action A3 
if ),(

31 AA IIOverlaps . 

In terms of action dependencies we may rightfully state that if action A1 is 
independent to action A3 then we may schedule and execute them fully concurrently. 
Granting concurrency to dependent actions is not that straightforward. The case of a 
strong dependency is simpler.  

Corollary 1: – concurrency of strongly dependent actions. If action A3 is strongly 
dependent on action A1 then they can not be executed concurrently.  

The case of a weak dependency is more complex.  
Corollary 2: – concurrency of environmentally dependent actions. If action A3 is 

environmentally dependent of action A1, then their concurrent execution, while being 
possible, may make the overall performance less optimal. 

Corollary 3: – concurrency of actions with facilitation dependency. If action A1 
facilitates the execution of action A1, then their concurrent execution while result in 
better overall performance. 

4 Implementation and Evaluation  

Action modeling framework has been implemented as an OWL-DL5 ontology which 
is the part of PSI Suite of Ontologies. The partial implementation has been done in 
PSI Task-Activity Ontology v.2.0, has been refined in its v.2.1 and PSI Process 
Ontology v.2.2. PSI Shaker Modeling Methodology [21] has been used for this 
refinement. Fig. 4 pictures the UML diagram of PSI Process Ontology v.2.2. Full 
details of this ontology are given in [28]. White packages in Fig. 4 represent different 
PSI Core ontologies: Actor Ontology; Project Ontology; Design Artifact Ontology; 
Environment, Event, and Happening Ontology [10]; Time Ontology [9]. The yellow 
package represents the Resource Extension Ontology developed in PRODUKTIV+6. 

PSI Process Ontology has been evaluated as the part of the Core of PSI Suite of 
Ontologies v.2.2 using Shaker Modeling Methodology for ontology refinement [35]. 
Three different evaluation activities have been performed: (i) user evaluation; (ii) 
formal evaluation; (iii) commonsense evaluation.  

User evaluation has been performed as a goal-based evaluation of the adequacy of 
the knowledge model and its implementation in the ontology to the set of 

                                                           
5 Web Ontology Language, http://www.w3.org/TR/owl-guide/.    
6 PRODUKTIV+  is the R&D project funded by the German Bundesministerium für Bildung 

und Forschung (BMBF). 
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requirements by the group of subject experts in microelectronic engineering design. It 
found out that the ontology adequately answers the competency questions formulated 
using the requirements by subject experts. Several test cases have been developed for 
evaluating the suite of ontologies using simulation. A testcase is a real or a fictive 
project for which at least all the initial data instances required for design system 
modeling are available. Acquiring a testcase allows to verify that the ontology is 
capable of storing all initial data and to start simulation using the multi-agent system 
(MAS). Ideally, a testcase also provides a complete project execution record which is 
required for the calibration step and for the verification of the simulation results. 
Amongst the set of testcases are very simple and fictive ones describing tiny digital 
and tiny analog designs. These have been used to verify and refine the model and the 
ontologies. Others are based on real world projects of digital chip design. These are 
fictive ones as well designed for demonstration purposes because real world projects 
usually may not be disclosed to public. For calibration the Project Planning Expert 
System MAS [2] was fed with the project definition and the knowledge base. Using 
these, it created a new Work Breakdown Structure (Fig. 5a). The result was then 
compared to the original structure, differences were analyzed, and corrections were 
made until the both roughly matched. At subsequent stages the MAS simulated 
project executions (Fig. 5b) and again the results were compared to the original 
project course. Project log replay simulations and calibration experiments proved that 
the approach is effective and practical.  

 

 

Fig. 4. UML diagram of the main concepts in the PSI Process Ontology v.2.2. 
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 a) WBS Graph; section of graph generated in planning. 
Ellipses stand for results, rectangles for tasks. Darker 
entries show the selected path. 

b) Comparison of task durations in planning (brighter 
bars) and execution (darker bars) 

Fig. 5. The results of planning and execution phases of a design process simulation  
in Cadence Project Planning Expert System (PPES). 

Formal evaluation has been performed using OntoClean methodology [29]. Its 
objective was to check formal conformance of the taxonomy structure of the 
evaluated Suite of Ontologies v.2.2 to the meta-properties of rigidity, identity, and 
dependence [30]. Formal evaluation of PSI Process ontology together with PSI 
Upper-Level Ontology [21] revealed that the taxonomical structure is conceptually 
correct.  
The mappings of the concepts of the Process ontology to SUMO [23] through PSI 
Upper-Level Ontology and WordNet [24] have been defined [19] for evaluating these 
ontologies with respect to the common sense [31]. This work revealed that the 
ontology adequately maps to SUMO – the chosen [21] commonsense reference 
ontology. This fact allows us believing that the Process related part of the PSI Suite of 
Ontologies may be used not only internally in PSI and PRODUKTIV+ projects, but 
broader – as a descriptive theory of dynamically ramified processes in the domains 
which are dynamic, complex, and non-deterministic similarly to engineering design. 
One good example is the domain of knowledge processes and knowledge workers 
investigated by ACTIVE project7.     

7 Concluding Remarks 

The paper presents the action-related part of PSI Theoretical Framework and its 
implementation as the Process Ontology of the PSI Suite of Ontologies v.2.2. The 
advantages of the presented approach to modeling actions and processes are: (i) a rich 
variety of action kinds; (ii) environmentalistic approach to model processes, actions, 
their dependencies comprising concurrency; (iii) a state model refined using decision 
making mechanism and requirement sensitivity; (iv) an explicit difference between 

                                                           
7 ACTIVE: Knowledge Powered Enterprise (http://www.active-project.eu/) is an Integrating 

Project funded by Framework Program 7 of the European Union. 
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events and actions. These advancements allow making process and action models 
being flexible and adaptive to the extent required for modeling structurally and 
dynamically ramified, time-bound processes characteristic for engineering design 
domain. PSI Suite of Ontologies has been iteratively refined starting from its initial 
version 1.0 till its current version 2.2 using PSI shaker modeling methodology. The 
methodology subsumes several kinds of evaluation activities which have been 
performed as reported in the paper. Evaluations proved that the presented approach to 
modeling actions and processes is practical and effective. The Core part and the 
several Extensions of the PSI Suite of Ontologies are used in the intelligent software 
system prototype – Cadence Project Planning Expert System.  
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