Toward a Syndicated Ontology of Time for the Semantic Web

Vadim Ermolayev

Dept of IT, Zaporozhye National Univ., Ukraine http://ermolayev.com/

The Plan ...

60/40

Motivation

- Representing time is important, e.g. for temporal reasoning
- Do, however, the existing ontologies cope well enough?
- Which one(s), if any, do(es) best?

• Requirement Elisitation & Analysis – using OntoElect

- What is OntoElect requirements elicitation phase?
- Who/what are the representative community/ document corpus?
- How were the requirements elicited?
- What was the outcome?
- Do the existing ontologies fit?
 - Checking against the elicited requirements ...
 - What are the white spots?

• **Developing a Syndicated Ontology of Time – ongoing work**

- Mechanistic merge does not fly ...
- A Syndicated Theory of Time
- Key Fragments also re. white spots
- Final Remarks

Motivation

... Plenty of It*

It is acknowledged that "**when God made** time, he made plenty of it". Remarkably, when it goes about the formal treatment of time, the status is very much following this Irish saying.

 * Ermolayev, V., et al. (2014) Ontologies of Time: Review and Trends. Int. J. of Computer Science & Applications, 11(3), 57–115

KIT, AIFB: SOT for the SW February 2, 2016

See Yourselves - Theories

Most Prominent:

How do We know these are all ...?

- Lamport (1978) (8651)^[1]
- Allen (1983) (7894)
- Pinto (1994) (220) based on Kowalski and Sergot (1986) (1708)
- Prior (1967) (1496)
- McDermott (1982) (1130)
- Sandewall (1995) (404)
- Halpern and Shoham (1991) (389)
- Bacchus and Kabanza (1998) (230) based on Alur *et al.* (1996) (399)
- Williams (1986) (198)
- Koubarakis (1992) (55)
- Iwasaki *et al.* (1995) (52)

We did ourselves:

- Batsakis, Petrakis (2011) SOWL: Handling Spatio-Temporal Information
- Ermolayev et al. (2008) Fuzzy Time Intervals
- ^[1] Ordered by the number of citations (given in round brackets) as of Aug. 24, 2014. Source: Google Scholar.

See Yourselves - Logics

How do We know these are all ...?

- FOTL First Order Temporal Logic
- LTL Linear-time Temporal Logic
- MFOTL Metrical First Order Temporal Logic
- NL Neighborhood Logic
- PTL Propositional Temporal Logic
- TL Temporal Logic

Do we Have Instruments?

- Not too many
- Problems with expressive power ...

See Yourselves - Ontologies

Why So Many? – Diverse Apps

Temporal Theory Application Area	Lamport (1978)	Allen (1983)	Pinto (1994) - Kowalski & Sergot (1986)	Prior (1967)	McDermott (1982)	Sandewall (1995)	Halpern & Shoham (1991)	Bacchus & Kabanza (1998) - Alur et <i>al.</i> (1996)	Williams (1986)	Koubarakis (1992)	Iwasaki et <i>al.</i> (1995)	Ermolayev et al. (2008a)
- Planning					+		+	+				+
- Robot planning		+										
- Histories and historical data		+			+							
- Process modeling and process interaction		+			+		+					+
- Change		+	+		+	+	+					+
- Computer-aided engineering											+	+
- Action			+		+	+						+
- Real-time systems	+							+			+	
- Behavioral prediction									+		+	
- Explanation									+			
- Diagnosis									+			
- Simulation											+	+
- Hybrid systems											+	
- Natural language processing		+		+								

Why Important?

- Has been in the focus of scientific thought from ancient times
 - e.g. **Plato**: the revolution of the celestial spheres
- Continues to be an important subject of research for philosophers, physicists, mathematicians, logicians, computer scientists, and even biologists

Geocentric celestial spheres; Peter Apian's Cosmographia (Antwerp, 1539)

 One reason: time is a <u>fundamental aspect</u> to understand and react to <u>change</u> in the World, including the broadest diversity of applications

Is it Enough?

... in particular for the Semantic Web community

- What are the **requirements**?
- How are those transformed to the set of required features?
- Are those features **covered** by the available:
 - Theoretical frameworks?
 - Implemented ontologies of time?
- Any white spots?
- Could the available ontologies be re-used/merged to cover the needs?

A Collab. Effort (SemData+)

- Vadim Ermolayev (ZNU) req. analysis, temporal theories, SOT theory, key concept models, SOT-wiki, PSI-ULO, PSI-Time
- Sotiris Batsakis (HUD) temporal reasoning frameworks, ontologies, TimeInstant, TimeInterval models, SOWL
- Frederic Mallet (UN-SA) SOT theory, Clock model, OMG Clock
- Natalya Keberle (ZNU) temporal reasoning frameworks, OWL+SWRL compliance check, PSI-Time
- **Olga Tatarintseva** (ZNU) OntoElect, req. elicitation, PSI-ULO

Eliciting Requirements Using OntoElect

Where to Go for Requirements?

Problems with Elicitation

- Acquiring a complete and accurate collection of Domain knowledge (requirements) is difficult:
 - K-s are subjective
 - K-s are tacit
 - K-s are partial
 - K-s are hard to get
 / not available
 - K-s specs are rarely explicit and formal
 - Contradictory interpretations
 - *unf* challenging
 expressive power

 A way to go: extract from a (good quality) document collection – authored by the stakeholders

How to Elicit - OntoElect

- **OntoElect** *: understanding requirements as **votes** of the Domain Knowledge Stakeholders regarding the Ontology
 - Ontology fitness (Φ) is understood as proportional to the ratio of positive and negative votes of the Stakeholders
 - Votes collected indirectly using a statistically representative Document Collection:

Requirements Extract a saturated set of multi-word key terms Elicitation

- Select the most **influential** key terms <u>Requirements</u>
- Transform the natural language definitions of the terms Conceptuato formalized structural contexts - Ontology Change lization Tokens
- Evaluation – Map the structural contexts to the ontology – positive and negative Votes
 - Compute the change in Φ more or less positive Votes
 - Tatarintseva, O. et al. (2013) Quantifying Ontology Fitness in OntoElect Using Saturation- and Vote-Based Metrics. In: Ermolayev et al. (eds.) ICT in Education, Research, and Industrial Applications. Revised Selected Papers of ICTERI 2013, CCIS 412, pp. 136–162

Key Terms

Requirements

Onto Change

Tokens

Votes

Fitness

Document Collection

- **Stakeholders**: TIME Symposia series authors
- **Document collection**: TIME Proceedings series, 1994-2013, ~440 papers, chronologically ordered
 - Good quality documents
 - Incremental slices of the document collection:

Slice ID	1994	1995	1996	 2012	2013
D1					
D2					
D19					
D20					

* Ermolayev, V., et al. (2014) Ontologies of Time: Review and Trends. Int. J. of Computer Science & Applications, 11(3), 57–115

TIME Papers

http://ermolayev.com/TimeOnto/TimePapers.zip

															\rightarrow		20010110	
N .	TIME	Papers (impac	t).xls										(Minority	×
	A	В	С	D	E	F	G	н	1	J	К	L	M	N	0	Р	Vata	
1	Year	Authors	Author	Paper Title	Pages	Complete Citation	Abstract		Cate	gory		Key phrases	No	Citation	Impact:	paper file name	voie	mark
			Affiliations					Reas	Repr	Appli	Ontol		Citatio	s per	(0.2*CpY)	(TimeOnto		7
								oning	esen	catio	ogy		ns	year	upper Int	DropBox)		
2									tatio	n					Part			
3								263	277	193	14							
46	1996	Y. Shahar	Stanford Univ.,	Dynamic temporal	64-71	Y. Shahar, "Dynamic	The temporal-abstraction task is the task of	1	1		1	temporal logic; temporal	62	3.4444	1	96-paper-14.pdf	http://doi.ieeecomputersociety.or	<u>/q/10.11</u>
	1996	E T. Keravnou	CA USA Dept of	Engineering time in medical	160-	E T Keraynou "Engineering	Starting from the premise that time representation			1	1	interpretation: temporal medical expert systems: medical	10	0.5556	1	96-paper-22 pdf	http://doi.ieeecomputersociety.or	ro/10 11 =
47			Comput Sci	knowledge-based systems	169	time in medical knowledge-	and temporal reasoning must constitute integral			· · ·	÷.	knowledge-based systems: time-		0.0000		ee paper EE.par		
10	1996	D. Gagne, A.	Alex Inf.,	A topological transition based	176-	D. Gagne, A. Trudel, "A	The authors present a spatio-temporal ontology	1	1		1	temporal reasoning; spatio-	2	0.1111	1	96-paper-24.pdf	http://doi.ieeecomputersociety.or	<u>;q/10.11</u>
40	1996	Trudel A Fusaoka	Lachine Que Dent of	Nonmonotonic reasoning on	181	A Fusaoka "Nonmonotonic	suitable for representing and reasoning about the	1	1		1	temporal ontology gualitative	1	0.0556	1	96-naner-26 ndf	http://doi.jeeecomputersociety.or	ro/10.11
49	1000	e i abaona	Comput Sci	a constructive time structure	195	reasoning on a constructive	interval division logic IDL based on the constructive	· ·	1.1		1	constructive time structure: interval	1 C	0.0000		oo paper 20.par	mp.//doi.ieeecomputersociety.or	9/10.1
50	1996	Choong-Ho Yi	Dept. of	Reasoning about concurrent	6-13	Choong-Ho Yi, "Reasoning	E. Sandewall (1994) proposed a systematic	1	1			temporal reasoning;	1	0.0556	1	96-paper-07.pdf	http://doi.ieeecomputersociety.or	<u>/q/10.11</u>
61	1996	L. Vila, E.	Dept. of Inf. &	A theory of time and temporal	21-29	L. Vila, E. Schwalb, "A theory	Time is fundamental in representing and reasoning	1	1			temporal reasoning; time; temporal	26	1.4444	1	96-paper-09.pdf	http://doi.ieeecomputersociety.or	rg/10.11
51	1996	E. Schwalb, R.	Dept. of Inf. &	Processing disjunctions of	30-35	E. Schwalb, R. Dechter.	Describes new algorithms for processing	1				temporal reasoning: disjunctions	1	0.0556	1	96-paper-10.pdf	http://doi.ieeecomputersocietv.or	ra/10.1*
52	1006	P Waterseit A	Sch of Comput	Reasoning with sequences of	36-39	"Dressessing disjunctions of R Waterseit & Sattar I	Proposes the modeling of recurring events as multi-	1	1			temporal reasoning: point event	6	0 3333	1	06-naner-01 ndf	http://doi.jeeecomputers.ociety.or	ro/10.11
53	1006	Pottor I. Khotih	Plof Tech Dont of	noint events	20.44	Khotih "Deceming with C. Badalani M. Barati	Point average his order dis a Vilain and Kourta (1006)	-	4	4			10	1.0000	-	06 paper 01.pdf	http://doi.icc.computero.coicty.co	co/10.11
54	1990	S. Dauaioni, M.	Electron *	Alopping ond ophoduling for	39-44	3. Daudiuili, W. Deldii,	heteroacone au temperal information in a uniform	1	1	-		temporal reasoning, hybrid	10	1.0000		90-paper-11.pu	http://doi.ieeecomputersociety.or	<u>wite tr</u>
55	1996	A. Cesta, A. Oddi	CNR, Rome,	Gaining efficiency and flowibility in the simple	45-50	A. Cesta, A. Oddi, "Gaining officiancy and flavibility in the	beals with the problem of managing quantitative	1				temporal reasoning; efficiency;	78	4.3333	1	96-paper-02.pdf	http://doi.ieeecomputersociety.or	<u>q/10.1</u>
56	1996	E. Schwalb, L.	Dept. of Inf. &	Logic programming with	51-56	E. Schwalb, L. Vila, "Logic	Combines logic programming and temporal	1	1			temporal logic; TCLP language;	7	0.3889	1	96-paper-12.pdf	http://doi.ieeecomputersociety.or	<u>.'q/10.1'</u>
57	1996	A. Isli, H.	Lab. d'Inf., Univ.	Networks of qualitative interval	57-63	A. Isli, H. Bennaceur,	We first define the concept of circuit consistency for	1				backtracking; qualitative interval	1	0.0556	1	96-paper-13.pdf	http://doi.ieeecomputersociety.or	<u>;q/10.11</u>
58	1996	E. Mota, D.	Dept. of Artificial	Representing interaction of	72-79	E. Mota, D. Robertson,	In this paper we describe NatureTime logic which		1	1		temporal logic; NatureTime logic;	9	0.5000	1	96-paper-15.pdf	http://doi.ieeecomputersociety.or	<u>/q/10.11</u>
59	1996	D. Cukierman,	Univ., Burnaby,	Characterizing temporal	80-87	D. Cukierman, J. Delgrande,	This paper is a preliminary investigation of temporal		1			artificial intelligence; temporal	16	0.8889	1	96-paper-16.pdf	http://doi.ieeecomputersociety.or	<u>/q/10.11</u>
60	1996	C. Combi, F.	Dipartimento di	Managing time granularity of	88-05	C. Combi, F. Pinciroli, G.	In the database field, the need of time management		1	1		time management; temporal data	13	0.7222	1	96-paper-17.pdf	http://doi.ieeecomputersociety.or	<u>(q/10.11</u>
61	1996	M.A. Orgun,	Dept. of	A recursive temporal algebra	96-103	M.A. Orgun, "A recursive	This paper introduces a recursive temporal algebra		1			relational algebra; recursive	5	0.2778	1	96-paper-03.pdf	http://doi.ieeecomputersociety.or	<u>/q/10.11</u>
62	1996	C. Bettini, X.S.	Dept. of Inf. Sci.,	A general framework and	104-	C. Bettini, X.S. Wang, S.	This paper presents a general framework to define	1	1			temporal reasoning; time	40	2.2222	1	96-paper-18.pdf	http://doi.ieeecomputersociety.or	<u>rq/10.11</u>
63	1996	A. Gal, D. Dori	Fac. of Ind. Eng.	Combining simultaneous	112-	A. Gal, D. Dori, "Combining	In temporal databases there are situations where		1			temporal databases; temporal data	2	0.1111	1	96-paper-04.pdf	http://doi.ieeecomputersociety.or	<u>rg/10.11</u>
64	1996	C. Dixon	Dept. of	Temporal resolution: a	120-	C. Dixon, "Temporal	An approach to applying clausal resolution, a proof	1				temporal logic; breadth-first	4	0.2222	1	96-paper-05.pdf	http://doi.ieeecomputersociety.or	<u>rq/10.11</u>
65	1996	E. Lamma, M.	Dipartimento di	Temporal reasoning in a meta	128-	E. Lamma, M. Milano, P.	Constraint Logic Programming (CLP) is a powerful	1				temporal reasoning; constraint	4	0.2222	1	96-paper-19.pdf	http://doi.ieeecomputersociety.or	<u>ra/10.11</u>
66	1996	C. Martin, J.	Dept. de	An integrity constraint	136-	C. Martin, J. Sistac, "An	The authors propose a method for integrity checking	1	1			deductive databases; temporal	7	0.3889	1	96-paper-20.pdf	http://doi.ieeecomputersociety.or	rg/10.11
67	1996	G. Brajnik, D.J.	Dipartimento di	Guiding and refining	144-	G. Brajnik, D.J. Clancy,	We illustrate TeQSIM, a qualitative simulator for	1	1	1		temporal logic; TeQSIM; qualitative	6	0.3333	1	96-paper-06.pdf	http://doi.ieeecomputersociety.or	<u>rg/10.11</u>
68	1996	Bichindaritz, E.	Univ. Rene	Temporal knowledge	152-	I. Bichindaritz, E. Conlon,	The article presents the temporal knowledge		1			temporal knowledge	23	1.2778	1	96-paper-21.pdf	http://doi.ieeecomputersociety.or	rg/10.11
60	1996	G. Becher	Caen Univ.,	First order modal temporal	170-	G. Becher, "First order modal	Following the work of G. Ligozat (1991) who	1	1			temporal logic; first order modal	3	0.1667	1	96-paper-23.pdf	http://doi.ieeecomputersociety.or	rg/10.1*
70	1996	K.P. Jantke, O.	Fachbereich	A modal temporal logic and its	182-	K.P. Jantke, O. Arnold, "A	The focus of the paper is on the introduction of some		1	1		temporal logic; modal temporal	10	0.5556	1	96-paper-25.pdf	http://doi.ieeecomputersociety.or	<u>rq/10.11</u>
71	1996	A.Y. Tawfik, E.M.	Dept. of	Irrelevance in uncertain	196-	A.Y. Tawfik, E.M. Neufeld,	In the presence of uncertainty, relevance of	1	1			temporal reasoning; uncertain	11	0.6111	1	96-paper-27.pdf	http://doi.ieeecomputersociety.or	rg/10.1*
72	1996	Minglu Li,	Dept. of	Temporal representation for	204-	Minglu Li, Yongqiang Sun,	The paper focuses on temporal representation for		1	1		multimedia systems; multimedia	2	0.1111	1	96-paper-28.pdf	http://doi.ieeecomputersociety.or	rg/10.11
73	1996	R. Guillen, D.	Dept. of	Handling temporal relations in	217-	R. Guillen, D. Farwell, J.	Handling temporal information has been a main		1	1		language translation; temporal	4	0.2222	1	96-paper-30.pdf	http://doi.ieeecomputersociety.or	rg/10.1*
74	1996	M.R. Sanchez,	Sch. of Comput.	Time accountability for lattice	211-	M.R. Sanchez, A.M. Shende,	Computers that emulate reality must be bound by			1		digital simulation; time		0.0000	0	96-paper-29.pdf	http://doi.ieeecomputersociety.or	rg/10.1*
-	1997	Yuval Shahar	Stanford Int	Knowledge-Based Temporal	102-	Yuval Shahar, "Knowledge-	Temporal interpolation is the task of bridging gaps		1	1	1	Temporal reasoning, Temporal	37	2.1765	1	97-paper-14.pdf	http://doi.ieeecomputersociety.or	rg/10.11
75	1997	Clare Dixon	University CA Manchester	Internolation Temporal Resolution:	111 4-11	Based Temporal Clare Dixon "Temporal	between time-oriented concepts in a context-	1				Interpolation Temporal databases	7	0 4118	1	97-naper-01 pdf	http://doi.ieeecomputersociety.or	ro/10 1*
76	1007	A Kellett M	Matronalitan Dent of	Automata representations for	12-19	A Kellett M Fisher	efficient resolution proof exercise in cleaning for lotion	1				Concurrent METATEM Janguage:	5	0.2941	1	97-naner-02 ndf	http://doi.jeeecomputersociety.or	ro/10.1
77	1007	Cichor A Bolotov M	Comput Dept of	A resolution method for CTI	20-27	A Bolotov M Fisher "A	we avise of temperal resolution method for linear	1	1			temporal logic formulae: direct	22	1 20/1	1	97-paper-02.pdf	http://doi.ieeecomputersociety.or	ro/10.1
78	1007	Cichor Vittorio Bruscoi	Dipartimento di	An Efficient Algorithm for	20-27	Vittorio Brusoni, Luca	temperatures to a branching time from well. The	1				CTL bronching time temporal logic	22	1.2541	1	97-paper-03.pdf	http://doi.ieeecomputersociety.or	ro/10.1
M	4 >	H TIME Sy	mposia Oth	er Papers /	10000	Same Prostant - 10 -					•	(▶
													1					

Decisive

For Each Incremental Slice

 Bag of terms extracted * and sorted by normalized term scores (*ns*)

* Using TerMine service by the UK National Centre for Text Mining (NaCTeM, <u>http://www.nactem.ac.uk/</u>).

Bags of Terms

Flat-TIME-94-13 (~150 000 terms) - very noisy

2097.292969 temporal logic 961.849976 temporal constraint 860.008362 artif temporal representation 762.130432 temporal reasoning 748.005737 temporal checking 566.246094 temporal database 458.699402 international conference 379.297150 modal logic 376.742493 query language 350.921875 normal form 303.727264 temporal query 300.608704 temporal datum 298.344543 temporal satisfiability problem 259.454529 expressive power 255.666656 basic relation 237.834778 datum model 233.982941 linear temporal logic 232.862030 ieee c interval 213.044937 temporal object 204.711716 logic programming 203.4615 relation 202.875198 thirteenth international symposium 202.478867 transition instance 194.446808 interval algebra 190.472519 constraint network 182.0731 logic 175.401962 constraint propagation 170.188232 ieee computer 167.7187. 161.502762 Sourth international conference 161.001144 temporal query langua symposium 156.376251 first-order temporal logic 155.326324 10th internation 151.607147 kripke structure 151.545456 temporal type 150.571442 14th inter computer society 147.157898 ltl formula 146.517853 temporal granularity 144 138.593491 constraint satisfaction 137.454544 inference rule 136.194656 tem r t snodgrass 133.596893 information systems 133.111115 minimal network 1. data currency model 130.250000 atomic proposition 130.1044 cinternational checking problem 123.714287 propositional variable 123.117645 resolution m symposium 122.000000 min-max ctl 121.928574 atomic formula 121.666664 118.280487 relational database 117.818184 temporal dimension 117.793098 c 117.277779 interpretation context 116.352943 event calculus 116.287224 nint temporal problem 114.666664 ieee computer society press 13.928574 new yc 111.021736 mit press 110.434784 temporal attribute 110.230766 temporal pro 109.020546 international joint conference 108.706894 g t 108.625000 real-tim 107.963852 theoretical computer 107.656250 temporal formula 106.6470571 propagation algorithm 103.734695 loop search 103.476189 state formula 102. 101.857140 qualitative relation 101.000000 free variable 100.793106 non-con

🛃 FI	at-TIME-Termho	od.xls					٢.
	Α		В				
1	2097.292969	temporal logic					=
2	961.849976	temporal constraint					
3	860.008362	artificial intelligence					
4	815.737549	computer science					
5	806.451599	temporal representation					
6	762.130432	temporal reasoning					
7	748.005737	temporal relation					
8	686.428589	international symposium					
9	626.972046	model checking					
10	566.246094	temporal database					
11	458.699402	international conference					
12	448.051941	temporal operator					
13	413.074066	temporal information					
14	379.297150	modal logic					
15	376.742493	query language					
16	350.921875	normal form					
17	321.367340	linear order					
18	316.660004	temporal expression					
19	303.727264	temporal query					
20	300.608704	temporal datum					
21	298.344543	temporal resolution					
22	271.244446	decision procedure					
23	262.740753	satisfiability problem					
24	259.454529	expressive power					
25	255.666656	basic relation					
26	250.501785	interval temporal logic					
27	240.478256	initial state					
28	237.834778	datum model					
29	233.982941	linear temporal logic					
30	232.862030	ieee computer society					
31	227.428574	lecture notes					
32	226.837204	temporal interval					
33	213.044937	temporal object					Ŧ
∢ ∢	→ → Flat-TI	ME-94-13	•	111		•	

• • • • • • • • •

For Each Incremental Slice

- Bag of terms extracted * and sorted by normalized term scores (ns)
- Termhood created by retaining
 - Valid terms manual filter
 - Important terms $ns > \varepsilon$ (such that the sum of ns above is a little higher than 50% elections)
- Termhood difference values computed using the *THD* algorithm **:
 - Absolute: *thd* (T_{i-1}, T_i)
 - Relative: $thdr = thd(T_{i-1}, T_i) / \sum_T ns_j^i$

* Using TerMine service by the UK National Centre for Text Mining (NaCTeM, <u>http://www.nactem.ac.uk/</u>).

 ** Tatarintseva, O. et al. (2013) Quantifying Ontology Fitness in OntoElect Using Saturation- and Vote-Based Metrics. In: Ermolayev et al. (eds.) *ICT in Education, Research, and Industrial Applications. Revised Selected Papers of ICTERI 2013*, CCIS **412**, pp. 136–162

Termhood Comparisons

Algorithm THD. Compute Termhood Difference **Input**: the termhoods T_i, T_{i+1} Pick up one **Output**: $thd(T_i, T_{i+1})$ Look for **linguistically similar** in the previous for $k = 1, ||T_{i+1}||$ *ident* := .F. Found: check the n-scores **for** $m = 1, ||T_i||$ if $(t_m^i, t_k^{i+1})_{\equiv}$ then do $thd := thd + \left| ns_m^i - ns_k^{i+1} \right|$; ident := .T. end do end for if ident := .F. then thd := thd + ns_k^{i+1} end for Not found: add the n-score

Termhood Comparisons

Collection	Terms	in the			4h hr. 0/		
Slice	Bag of Terms	Termhood	eps	thd, value	thar, %		
1994	8546	838	3.0000	54.4448	100.0000		
1994-1995	14597	1179	3.1699	35.9807	62.3806		
1994-1996	23992	1548	3.7549	36.0855	59.6366		
1994-1997	31427	2104	4.0000	23.7044	35.4153		
1994-1998	38122	2183	4.7549	22.4341	30.7901		
1994-1999	42788	2400	5.0000	14.9911	18.7218		
1994-2000	49986	2821	5.0000	17.4853	20.7287		
1994-2001	59294	3430	5.0000	23.1877	26.9035		
1994-2002	65627	3767	5.0000	13.1819	15.3747		
1994-2003	75171	3584	5.6147	25.0810	36.7663		
1994-2004	81617	3893	6.0000	9.6005	13.8278		
1994-2005	91692	4410	6.0000	13.3894	19.7595		
1994-2006	101190	4903	6.0000	9.0502	12.6376		
1994-2007	108203	5255	6.0000	7.3260	9.8946		
1994-2008	115493	5658	6.0000	8.5976	11.7790		
1994-2009	121832	6007	6.0000	6.6174	9.0302		
1994-2010	128171	5564	6.3043	6.3422	9.0829		
1994-2011	137918	6043	6.3399	13.0734	20.2061		
1994-2012	145173	6109	6.3549	5.1033	8.0395		
1994-2013	151075	6259	6.6667	5.4895	8.7677		

Completeness Check

- Observed:
 - Saturation:
 - ~6,000 terms
 in the last 4
 termhoods
 - *thd* below ε
 - Terminological drift
 - $\ thd$ above 0
 - Terminology contribution peaks:
 - 2001, 2003, 2005, 2008, and 2011
 - The (representative) majority vote
 - Still too many terms retained

Decisive Minority Vote

- Terminology contribution peaks: 2001, 2003, 2005, 2008, and 2011
- Account for impact:
 - Citation info collected (Google Scholar)
 - Paper impact computed based on citation frequency (*cfr*)
 - Papers with imp = n replicated *n* times – changing the incremental slices
 - thd /thdr /eps
 re-computed
- Strong correlation
- Termhood based on high-impact (24) papers only
- 686 Terms vs 6,109

 $imp = \begin{cases} [0.2 \times cfr] + 1, cfr > 0\\ 0, cfr = 0 \end{cases}$

Shortlist

- Bag of terms:
 - High-impact papers only
 - 24 vs ~440
- Termhood:
 - 686 Terms
 - Vs 6,109 extracted from the complete dataset
- All important terms with high *ns* retained
 – Manual check

	А	В	С
1	147.107147	temporal logic	
2	100.111170	calendar pattern	
3	86.541664	temporal constraint	
4	68.733330	temporal operator	
5	59.583332	fuzzy match	
6	58.000000	interval i	
7	54.000000	interval j	
8	52.250000	temporal structure	
9	49.833332	calendar schema	
10	46.250000	temporal representation	
11	41.000000	temporal reasoning	
12	40.000000	freeze quantifier	
13	39.624062	14th international symposium	
14	39.000000	international symposium	
15	37.727272	fuzzy interval	
16	36.363636	xml document	
17	36.000000	crisp interval	
18	34.000000	satisfiability problem	
19	34.000000	flexible variable	
20	33.297745	first-order temporal logic	
21	31.699249	star calendar pattern	
22	31.352942	computer science	
23	28.142857	search control	
24	27.000000	lola specification	
25	26.944363	ciac2	
26	26.266666	constraint system	
27	26.000000	ccsl specification	
28	25.961538	artificial intelligence	
29	24.799999	point-interval relation	
30	24.750000	interval interval	
31	23.692307	temporal notion	
32	23.500000	f wolter	
33	23.333334	X X X X	
34	23 114288	XXX	

Manually Categorized Terms

How do We know ...

Score	Term	Logic	Problem	Formula	Formalism	Operator	Method	Model	Reasoner	Domain	Language	Feature	Constraint	Instance	Pattern	Application	Project	Author	
	Total No of terms: 686	4	27	6	36	8	22	24	1	4	8	175	28	1	13	110	1	178	
147.11	temporal logic	~	·																
100.11	calendar pattern														~				
86.54	temporal constraint												~						
68.73	temporal operator					>													
59.58	fuzzy match											~							
52.25	temporal structure											<							
49.83	calendar schema											~							
46.25	temporal representation				<														
41.00	temporal reasoning						~												
40.00	freeze quantifier				<														
37.73	fuzzy interval											~							
36.36	xml document															✓			
36.00	crisp interval											✓							
34.00	satisfiability problem		✓																

Feature Taxonomy

KIT, AIFB: SOT for the SW February 2, 2016

Theories vs Features

Theories of time Motivale research in boos Motivale research in boos Motivale research In processing Proceeding Motivale Research In proceeding In

A fragment:

Temporal Theory Feature of Time	Lamport (1978)	Allen (1983)	Pinto (1994) - Kowalski & Sergot (1986)	Prior (1967)	McDermott (1982)	Sandewall (1995)	Halpern & Shoham (1991)	Bacchus & Kabanza (1998) - Alur <i>et al.</i> (1996)	Williams (1986)	Koubarakis (1992)	Iwasaki <i>et al.</i> (1995)	Ermolayev et al. (2008a)	Synthetic Theory
Temporal Elements													
- Points (Instants)	+	-	+	+	+	+	+	+	+	+	+	+	+
- Intervals		+		+	+		+	+	+			+	+
- Convex(C), Non-convex(N)					С			С					CN
- Open (O), Closed (C)		0		OC	OC		OC	OC	С			OC	OC
- Bounded (B), Unbounded (I)				BU	BU			BU	В			BU	BU
- Fuzzy(F), Crisp (C)									С			FC	FC
- Periodic Temporal Elements				+								+	+
Temporal Structures													
- Point(P)-, Interval(I)-Based Structures		Ι		PI	PI	Р	Р	PI				PI	PI
- Temporal Segments							+					+	+
- Temporal Periods												+	+
- Calendars		+										+	+

Ontologies vs Features

A fragment:

Temporal FeaturesOZ- Open (O), Closed (C), Closed at the Beginning (Z)OOOOZOO+- Anisotropy++++IDR- Density: Discrete(I), Dense(D), Continuous (R)DRDIDRRI+- Partitioning+*1*2++-+- PeriodicityLLLLL*3- Linear (L), Branching (B)LLLLLLLAR- Absolutist (A), Relativist (R)ARARARARARF- Uncertainty(U), Fuzziness (F)UF*4-F*4U*5FU*2 Time - the whole time; Temporal Region - the part of time*2 TimeLine only*3 A relaxed linearity allowing a number of parallel independent time lines*4 Fuzzy durationE.g. TimeML introduces the tags for the lower bound and upper bound duration annotations (lowerBoundDuration and upperBoundDuration attributes).*5 For Time-Points only	Synthetic theory	Ontology of Time Feature of Time	Cyc Time	SUMO Time	DOLCE	BFO	GFO-BT	OTU-IS9	OWL-Time	TimeLine	Reusable Time	PSI-Time	AKT Time	SWRL Temporal	IMOS
OZ- Open (O), Closed (C), Closed at the Beginning (Z)OOOOZOOOO+- Anisotropy+++++++IDR- Density: Discrete(I), Dense(D), Continuous (R)DRDIDRRI+- Partitioning+*1*2++++- Periodicity+-+- Periodicity+-+- Periodicity+-+- Periodicity+++- Periodicity+++- Periodicity+++- Periodicity++++++++++<		Temporal Features			1										
+- Anisotropy-++++++IDR Dense(D), Continuous (R)DRDIDRRI-+- Partitioning+*1*2++-+- Periodicity+-+- Periodicity++<	OZ	- Open (O), Closed (C), Closed at the Beginning (Z)		0				0	0	OZ	0	0			0
IDR - Density: Discrete(I), Dense(D), Continuous (R) D R D I DR R I + - Partitioning + *1 *2 + + + + - Periodicity - - - + + + + - Periodicity - - - + + + L*3 - Linear (L), Branching (B) L L L L L L L L AR - Absolutist (A), Relativist (R) AR AR AR AR AR AR AR AR F - Uncertainty(U), Fuzziness (F) UF*4 - F*4 U*5 Ft Notes: **1 Time - the whole time; Temporal Region - the part of time *2 TimeLine only *3 A relaxed linearity allowing a number of parallel independent time lines *4 Fuzzy duration. E.g. TimeML introduces the tags for the lower bound and upper BoundDuration attributes). *5 For Time-Points only	+	- Anisotropy						+	+			+			+
+ Partitioning + *1 *2 + + + Periodicity + + L*3 - Linear (L), Branching (B) L L L L L L L L AR - Absolutist (A), Relativist (R) AR AR AR AR AR AR AR F - Uncertainty(U), Fuzziness (F) UF*4 E F*4 U*5 FU Notes: *1 Time - the whole time; Temporal Region - the part of time *2 TimeLine only *2 TimeLine only *** TimeLine only **3 A relaxed linearity allowing a number of parallel independent time lines *4 Fuzzy duration. E.g. TimeML introduces the tags for the lower bound and upper bound duration annotations (lowerBoundDuration and upperBoundDuration and upperBoundDuration attributes). *** For Time-Points only *** For Time-Points only	IDR	- Density: Discrete(I), Dense(D), Continuous (R)	D			R	D	Ι		DR	R	Ι			
+ - Periodicity + + - L*3 - Linear (L), Branching (B) L L L L L L L AR - Absolutist (A), Relativist (R) AR AR AR AR AR AR AR F - Uncertainty(U), Fuzziness (F) UF*4 Image: State of the state	+	- Partitioning	+			*1				*2	+	+			
L*3 - Linear (L), Branching (B) L <t< td=""><td>+</td><td>- Periodicity</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>+</td><td></td><td></td><td></td></t<>	+	- Periodicity										+			
AR - Absolutist (A), Relativist (R) AR AR <td>L*3</td> <td>- Linear (L), Branching (B)</td> <td>L</td> <td>L</td> <td></td> <td></td> <td>L</td> <td>L</td> <td>L</td> <td></td> <td></td> <td>L</td> <td></td> <td></td> <td>L</td>	L*3	- Linear (L), Branching (B)	L	L			L	L	L			L			L
F - Uncertainty(U), Fuzziness (F) UF*4 F*4 U*5 FU Notes: *1 Time - the whole time; Temporal Region - the part of time *2 TimeLine only *3 A relaxed linearity allowing a number of parallel independent time lines *4 Fuzzy duration. E.g. TimeML introduces the tags for the lower bound and upper bound duration annotations (lowerBoundDuration and upperBoundDuration attributes). *3 For Time-Points only	AR	- Absolutist (A), Relativist (R)	AR	AR					AR		AR	AR	A		AR
Notes:*1 Time - the whole time; Temporal Region - the part of time *2 TimeLine only *3 A relaxed linearity allowing a number of parallel independent time lines *4 Fuzzy duration. E.g. TimeML introduces the tags for the lower bound and upper bound duration annotations (lowerBoundDuration and upperBoundDuration attributes). *5 For Time-Points only	F	- Uncertainty(U), Fuzziness (F)	UF*4						F*4		U*5				FU
Temperat		Notes:	* ¹ Tin * ² Tin * ³ A r * ⁴ Fuz upper upper * ⁵ For	ne - th neLine elaxed zzy du bound Bound	e whol e only l linear ration. l durat lDurati -Points	rity all E.g. I ion and on attr s only	y Tempowing CimeM notation ributes	a num L intro ns (loy).	ber of oduces werBo	- the p paralle the tag undDu	el inde gs for t ration	time pender the lov and	nt time ver bot	e lines und an	d
		Temporal Elements													
+ - Points (Instants) + + + + + + + + + + + + + + +	+	- Points (Instants)	+	+		+	+	+	+	+	+	+	+	+	+
+ - Intervals + + * ⁶ * ⁶ + + + + + + + + + +	+	- Intervals	+	+	*6	*6	+	+	+	+	+	+	+	+	+
CN - Convex(C), Non-convex(N) C CN C C	CN	- Convex(C), Non-convex(N)							C		CN			C	C

Theories of time

> Temporal Representatic and Reasonin Frameworks

Motivata in logion Representation and Reasoning Symposia

> Ontologier of Time

Which one Does the Best?

• Focused time ontologies:

– Do NOT cover all the required features

•

Summary of Analysis 1/2

- **NO** single ontology that covers all the features
- All the ontologies taken together do **NOT** satisfactorily cover some features:
 - **Density** of time
 - Relaxed linearity of time
 - Scale factors
 - Proper and periodic subintervals
 - Temporal measures and clocks
- Some of the ontologies offer their unique contribution:
 - TimeLine time line which is closed at its beginning Origo
 - ReusableTime convex and non-convex time intervals
 - **SOWL uncertainty** in time, esp. in relations;
 - PSI-Time temporal periodic structures and segments
 - SWRL Temporal date/time stamps/formats

Summary of Analysis 2/2

- Available temporal logics and specification languages have sufficient expressive power to cover the required temporal features
 - Uncertainty and Fuzziness may be not easy ...
- A cross-disciplinary effort is required to address the features that are not covered
 - E.g, the results in <u>formal verification</u> and <u>distributed run-time</u> <u>systems</u> could be useful to cover the representations of **clock**s and **measure**s of time
- Mechanistic merging for re-use does not really fly:
 - Different and partially contradictory models and principles
 - Harmonization effort is required to put together all the available bits for re-use
 - To begin with a harmonized (SYNDICATED) theoretical model of time

Merging does not Fly ...

- Different models are based on different theories
 - Incorporating different: features, elements, structures
- Scope and Focus:
 - **Time** vs Temporal **Incidence** * (like event calculi, spatio-temporal ...)
 - Instants vs Intervals (aka punktlich vs luego)
 - Dense vs Sparse Domains (e.g. Discrete vs Continuous)
 - Branching vs Linear (e.g. for distributed and embedded systems)
 - With or without an **Origo** (was there the beginning of times? ...)
 - Convexity, periodicity, ...

- ...

- Logical inconsistencies, e.g.:
 - Dividing Instance Problem (e.g. Allen's light switch)
 - Instantaneous Fluents (e.g. tossing a ball)

* L. Vila, E. Schwalb, A theory of time and temporal incidence based on instants and periods. In: 3rd W-shop on Temporal Representation and Reasoning (TIME'96), pp.21-28 1996

Dividing Instant Problem

- Instantaneous event of switching the light off
 - Allen*:
 - If both time intervals are <u>closed</u>, then light is **on** and **off** at this moment
 - <u>Open</u> **neither on**, **nor off**...
 - Does not happen instantaneously
 - No need for Time Instants
 - These are Time Intervals (though short)
- Dense Time ...
 - What if Discrete?
- Punktlich vs relaxed and blurred (luego) ...

* Allen, J. (2013): Maintaining knowledge about temporal intervals. CACM, **26**(11), 832–843

Tossing a Ball ...

- When does the ball have its vertical speed == 0?
 - Instantaneous
 - Also for any other fluents with
 EXACT parameter values being of interest

- Both in Dense and Sparse domains
- Vila & Schwalb*:
 - Time Instants are the same class citizens as Intervals

* L. Vila, E. Schwalb, A theory of time and temporal incidence based on instants and periods. In: 3rd W-shop on Temporal Representation and Reasoning (TIME'96), pp.21-28 1996

Design Principles for a Time Onto

- Careful **scoping**:
 - Time is just about TIME, nothing more broad any temporal incidence is not relevant
- Allowing for modeling alternatives:
 - For different incidence theories
 - For different applications
 - Providing necessary features as completely as possible in a coherent theory
- Keeping it (language) standard compliant
 - W3C: OWL 2 DL + SWRL
- Which is ALL ...
 - Difficult
 - Prohibiting a mechanistic merge
 - A theory should come first ...

Syndicated Model of Time

Methodology

OntoElect Conceptualization Phase:

- Develop the Backbone Taxonomy
 - Based on the Requirements (features)
- Develop the Seed:
 - Focus on Key Concepts (Taxonomy)
 - E.g.: <u>TimeLine</u>, <u>TimeInstant</u>, <u>TimeInterval</u>, <u>Clock</u>
 - Develop/refine theoretical descriptions
 - Check if **implementable** using the available (W3C) languages
 - Harmonize check consistency
 - Transform to Ontology (Change Tokens)
 - Visualize in a UML Class Diagram
 - Produce a W3C compliant code (OWL 2 DL + SWRL)
 - Document (SOT-Wiki)
 - Evaluate against required features (OntoElect: Fitness, Evaluation phase)

Expand

- Add concepts (Taxonomy)
- Repeat the cycle until:
 - All the requirements are met (OntoElect: Fitness, Evaluation phase)
 OR
 - The limits of expressive power are reached (W3C **compliance**)

Backbone Taxonomy

Ongoing work ...: SOT Backbone Taxonomy Model. Revision 4.

KIT, AIFB: SOT for the SW February 2, 2016

TimeLine: Relevant Req-s

Requirement	Syndicated Temporal Theory	Relevant Parts of the Model
High-Level Temporal Features		
- Open (O), Closed (C), Closed at the Beginning (Z)	OZ	TimeLine
- Anisotropy	+	TimeLine
- Density: Discrete(I), Dense(D), Continuous (R)	IDR	TimeLine, TimeValueDomain
- Linear (L), Branching (B)	L^1	TimeLine
- Partitioning	+	TimeLine, Phase, TemporalSegment
Temporal Properties		
 Metric(M), Non-metric(N) Time 	М	TimeLine, TimeValueDomain
Temporal Measures		
- Global (G), Local (L) Clocks	GL	TimeLine, Clock

• A TimeLine is a major TemporalStructure:

- Putting together all the temporal elements and structures (TimeInstants, TimeIntervals, segments) by allowing relativist and absolutist relationships among them; and
- Providing a mapping through a TimeValueDomain (Integers, Reals, Super-Reals, etc.) for TimeStamps of those elements

KIT, AIFB: SOT for the SW February 2, 2016

. . .

TimeLine: Theory (Fragment)

• **Density** of Time

Each individual TimeLine has one and only one TimeValueDomain associated with it to which the TimeInstants in this TimeLine are mapped to. Regarding this association, a time line may be <u>sparse</u> or <u>dense</u>. For a <u>dense</u> TimeLine, with the two arbitrary TimeInstants t₁ and t₂ in it, the following statement holds true:

 $\forall t_1, t_2 : before(t_1, t_2), \exists t_3 : before(t_1, t_3) \land before(t_3, t_2)$

 It does not hold true for <u>sparse</u> TimeLines, e.g. those mapping TimeInstant locations to <u>Integers</u>.

SOT Theoretical Framework. Revision 5

TimeLine: Theory (Fragment)

- Anisotropy of Time
 - Our model reflects the anisotropic nature of time by postulating the anti-symmetry of the relationships between TemporalElements. For example, if any t1 and t2, are TimeInstants on the same TimeLine T then

before
$$\mathbf{t}_1, \mathbf{t}_2 \xrightarrow{} after \mathbf{t}_2, \mathbf{t}_1$$

- In SWRL the rules are as follows:
 - TimeLine (?T) ^ TimeInstant(?t1) ^
 TimeInstant(?t2) ^ on(?t1,?T) ^ on(?t2,?T) ^
 before(?t1,?t2) -> after(?t2,?t1)
 - TimeLine (?T) ^ TimeInstant(?t1) ^ TimeInstant(?t2) ^ on(?t1,?T) ^ on(?t2,?T) ^ after(?t2,?t1) -> before(?t1,?t2)

SOT Theoretical Framework. Revision 5

KIT, AIFB: SOT for the SW February 2, 2016

TimeLine: Theory (Fragment)

Linear / Branching Time

- Our model assumes the <u>independent</u> existence of <u>several</u> TimeLines
 - Each of these TimeLines is individually linear i.e. a total linear ordering is established on the set of TimeInstants positioned on the same TimeLine.
- Different TimeLines are not directly related to each other in the sense that only a <u>partial ordering</u> could be indirectly established between the TimeInstants positioned on different TimeLines.
 - This partial ordering is the way to model <u>branching</u> time structures.

SOT Theoretical Framework. Revision 5

TimeLine: (UML) Model

SOT TimeLine Model. Revision 3

KIT, AIFB: SOT for the SW February 2, 2016

TimeLine: Wiki Page

<u>http://isrg.kit.znu.edu.ua/sot-wiki/index.php/SOT-TimeLine</u>

SOT-TimeLine

TimeInstant: Relevant Req-s

Requirement	Syndicated Temporal Theory	Relevant Parts of the Model
High-Level Temporal Features		
- Absolutist (A) Relativist (R)	AR	TimeInstant, TimeInterval (relationships), TimeStamp
- Uncertainty(U)	U	TimeInstant, TimeStamp
Temporal Elements		
- Instants	+	TimeInstant
Temporal Properties		
- Metric(M), Non-metric(N) Time	M	TimeInstant
- Temporal Distance	+	TimeInstant, TimeStamp
Temporal Relations		
- Interval-Point Relations	+	
- Start (S), Middle (I), End (E) Points	SIE	TimeInstant, TimeInterval
- Fuzzy(F), Crisp(C) Relations	CF	TimeInstant
- Point-Point Relations	+	
- Fuzzy (F) and Crisp (C) Relations	CF	TimeInstant
Temporal Measures		
- Duration (D), Location (L), Delay (E)	DLE	TimeInstant, TimeInterval

TimeInstant: Relativism

Let t1 and t2 be any two **TimeInstants** positioned on the <u>same</u> **TimeLine** (T). Then one and only one of the following three statements holds true reflecting the <u>total linear ordering</u> on the set of **TimeInstants** :

before $\mathbf{t}_1, \mathbf{t}_2$) equals $\mathbf{t}_1, \mathbf{t}_2$) after $\mathbf{t}_1, \mathbf{t}_2$)

- The total linear ordering imposes that the following hold true:
 - Anisotropy:
 - TimeLine (?T) ^ TimeInstant(?t1) ^ TimeInstant(?t2) ^
 on(?t1,?T) ^ on(?t2,?T) ^ before(?t1,?t2) ->
 after(?t2,?t1)
 - Reflexivity:

- TimeLine (?T) ^ TimeInstant(?t1) ^ on(?t1,?T) ->
equals(?t1,?t1)

- Transitivity:
 - TimeLine (?T) ^ TimeInstant(?t1) ^ TimeInstant(?t2) ^ TimeInstant(?t3) ^ on(?t1,?T) ^ on(?t2,?T) ^ on(?t3,?T) ^ before(?t1,?t2) ^ before(?t2,?t3) -> before(?t1,?t3)
 - TimeLine (?T) ^ TimeInstant(?t1) ^ TimeInstant(?t2) ^ TimeInstant(?t3) ^ on(?t1,?T) ^ on(?t2,?T) ^ on(?t3,?T) ^ after(?t1,?t2) ^ after(?t2,?t3) -> after(?t1,?t3)

SOT Theoretical Framework. Revision 5

TimeInstant: (UML) Model

SOT TimeInstant Model. Revision 7

KIT, AIFB: SOT for the SW February 2, 2016

TimeInstant: Wiki Page

• <u>http://isrg.kit.znu.edu.ua/sot-wiki/index.php/SOT-TimeInstant</u>

Contents [hide]
1 Requirements [1]
2 Theoretical Framework
2.1 Specific Kinds of a TimeInstant
2.2 Properties of a TimeInstant: positioning and uncertainty
2.3 Relationships between TimeInstants
3 Implementation
3.1 The Definition of a TimeInstant
3.2 Concept-Level Axioms
3.3 Domain Properties
3.4 Object Properties
3.4.1 Subsumptions
3.4.2 Holonymy/Meronymy
3.4.3 Associations
3.5 OWL/SWRL Code
4 Mappings to the Other Ontologies of Time
5 References

TimeInterval: Relevant Req-s

Requirement	Syndicated Temporal Theory	Relevant Parts of the Model
High-Level Temporal Features		
- Absolutist (A), Relativist (R)	AR	TimeInstant, TimeInterval (relationships), timeStamp
- Uncertainty(U)	U	TimeInstant, timeStamp
- Fuzziness (F)	F	TimeInterval
Temporal Elements		
- Intervals	+	TimeInterval
 Convex(C), Non-convex(N) 	CN	
- Open (O), Closed (C)	OC	
- Bounded (B), Unbounded (I)	BI	
- Fuzzy(F), Crisp (C)	FC	
Temporal Structures		
- Point(P)-, Interval(I)-Based	PI	TimeInterval
Temporal Properties		
- Duration	+	TimeInterval
Temporal Relations		
- Interval-Interval Relations	Allen's relationships	TimeInterval
- Disjoint		
- Overlapping		
- Consecutive		
- Adjacent		
- Meets		
- Union		
- Subinterval	+	TimeInterval
- Proper (R), Periodic (E) Subinterval	RE	TimeInterval
 Fuzzy (F), Crisp(C) Relations 	FC	TimeInterval
- Interval-Point Relations	+	
- Start (S), Middle (I), End (E) Points	SIE	TimeInstant, TimeInterval
 Fuzzy(F), Crisp(C) Relations 	CF	TimeInterval
Temporal Measures		
- Duration (D), Location (L), Delay (E)	DLE	TimeInterval

TimeInterval: Theory

A TimeInterval is a segment of a <u>particular</u> TimeLine, thus <u>having</u> Duration. A TimeInterval is regarded as a TimeInstant <u>based</u> TemporalStructure:

 $i = \langle T_i, [t_i^s], [t_i^e], \mu_i \ t \in T_i \rangle$

- $T_i = t_i$]- the set of **TimeInstants** which <u>conditionally</u> belong to the **TimeInterval** as its members.
- *t_i^s* the starting **TimeInstant**. This **TimeInstant** may not belong to *T_i* if *i* is *open* at start. This **TimeInstant** does not exist [...] if *i* is *unbounded* at the start, which applies only to the **TimeLine** s without an **Origo**.
- t^e_i the ending TimeInstant. This TimeInstant may not belong to if T_i if i is open at end. This TimeInstant does not exist [...] if i is unbounded at the end.
- $\mu_i \ t \in T_i$)— the membership function over the **TimeInstants** $t \in T_i$...

SOT Theoretical Framework. Revision 5

KIT, AIFB: SOT for the SW February 2, 2016

TimeInterval: (UML) Model

- Bounded / Unbounded
- Open / Closed
- Convex / Non-Convex
- Crisp / Fuzzy
 Membership Function
- Relationships to a TimeInstant
- Relationships between
 TimeIntervals
 - Meronymy
 - Allen's (incl. extension for nonconvex)
- Past and Future (TimeLine)

SOT TimeInterval Model. Revision 7

TimeInterval: Wiki Page

• http://isrg.kit.znu.edu.ua/sot-wiki/index.php/SOT-TimeInterval

Contents [hide]

1 Requirements [1]

2 Theoretical Framework

2.1 Membership Functions

2.2 Bounded and Unbounded TimeIntervals

2.3 Open and Closed TimeIntervals

2.4 Convex and Non-Convex TimeIntervals

2.5 Crisp and Fuzzy TimeIntervals

2.6 Relationships between TimeIntervals and TimeInstants

2.7 Relationships between TimeIntervals and TimeIntervals

2.7.1 Meronymy relationships

2.7.2 Allen's Relationships

3 Implementation

3.1 The Definition of a TimeInterval

3.2 Concept-Level Axioms

3.3 Domain Properties

3.4 Object Properties

3.4.1 Subsumptions

3.4.2 Holonymy/Meronymy

3.4.3 Associations

3.5 OWL/SWRL Code

4 Mappings to the Other Ontologies of Time

5 References

Clock: Theory

- Is a TemporalInstrument to generate the instances of a TemporalMeasure of a Present
- Is always associated with a particular single TimeLine. Different Clocks, associated with the same TimeLine or different TimeLines may "run" differently, e.g. quicker or slower and also with offsets compared to each other.
- Some Clocks may be related to each other with ClockRelation to compare the values they return.
 - A specific (widely used) kind of a ClockRelation is
 AffineClockRelation which allows aligning:
 - Different time velocities (using the scaleFactor property); and
 - Time <u>offsets</u>, like <u>delays</u> (using the *shift* property)
- A Clock, returns a TimeStamp which parts correspond to particular TimeUnits
- A **PhysicalClock** and a **LogicalClock** are the two disjoint specializations of a **Clock**

Clock: (UML) Model

SOT Clock Model. Revision 3

KIT, AIFB: SOT for the SW February 2, 2016

Clock: Wiki Page

• <u>http://isrg.kit.znu.edu.ua/sot-wiki/index.php/SOT-Clock</u>

Contents [hide]

- 1 Requirements [1]
- 2 Theoretical Framework
- 3 Implementation
 - 3.1 The Definition of a Clock
 - 3.2 Concept-Level Axioms
 - 3.3 Domain Properties
 - 3.4 Object Properties
 - 3.4.1 Subsumptions
 - 3.4.2 Holonymy/Meronymy
 - 3.4.3 Associations
- 4 OWL/SWRL Code
- 5 Mappings to the Other Ontologies of Time
- 6 References

Final Remarks

Some Concluding Remarks

- ~20 Time Ontologies developed to date
 - Some still available
- These do not fully cover the needs
 - Checked and gaps identified
 - Based on the TIME Community paper collection SWRL Temporal
- Merge for re-use does not fly straightforwardly
 - Different basic principles / foci on features
- Reusable Time Harmonization (theory) required
 - Syndicated time Ontology
 - Design principles: Scoping / Altrnatives / Compliance
 - Methodology: OntoElect
 - Key focal contexts:
 - TimeLine, TimeInstant, TimeInterval, Clock
 - ... Ongoing work ...
 - Yeah, no "evangelistic" questions to offer so far ...

TimeLine

Will be happy to answer your questions ...

Will be also happy to continue discussions

vadim@ermolayev.com

KIT, AIFB: SOT for the SW February 2, 2016