Towards Cooperative Distributed Service Composition on the Semantic Web

Vadim Ermolayev

eva@zsu.zp.ua

http://eva.zsu.zp.ua/

Dept of Math Modeling & IT Zaporozhye State Univ. Ukraine

Emerging Web of Services

- Emerging Semantic Web the result of the evolution of the conventional Web into a provider of services both
 - For humans
 - □ For artificial intelligent actors

"The Web, once solely a repository for text and images, is evolving into a provider of services — information-providing services, such as flight information providers, temperature sensors, and cameras, and world-altering services, such as flight-booking programs, sensor controllers, and a variety of e-Commerce and business-to-business applications. Web-accessible programs, databases, sensors, and a variety of other physical devices realize these services. ..."

Sheila McIlraith et al. (2001)*

*McIlraith, S. A., Son, T. C. and Zeng, H. (2002) Semantic Web Services, IEEE Intelligent Systems. Sp. Issue on The Semantic Web, 16(2), p. 46-53

The Web of Business Services

If to go closer to the rational world of Business:

- Business services can be completely decentralized and distributed over the Internet and accessed by a wide variety of communications devices
- The internet will become a global common platform where organizations and individuals communicate among each other to carry out various commercial activities and to provide value-added services
- The dynamic enterprise and dynamic value chains become achievable and may be even mandatory for competitive advantage

WS for EB/EC

E-business infrastructure companies are beginning to announce platforms to support some level of Web-service automation

Some of the Examples:

- Hewlett-Packard's e-Speak, a description, registration, and dynamic discovery platform for e-services
- □ Microsoft's .NET and BizTalk frameworks
- Oracle's Dynamic Services Framework
- □ IBM's Application Framework for E-Business
- Sun's Open Network Environment

Web Services – the Features

- Self-contained
- Self-described
- Modular
- Active

components for assembling intelligent infrastructures on the Web (at run time, dynamically)

W3C: Web Services – the Features

"A Web Service is a software application" identified by a URI, whose interfaces and **binding** are capable of being **defined**, described and discovered by XML artifacts and supports direct interactions with other software applications using XML based messages via Internet-based protocols" W3C Web Services **Architecture Working** Group

Advanced WS Features (e.g., NGE)

Means for:

- □ Service negotiation
- □ Service outsourcing
- Service trade
- What we'll need to cope with:
 - Reputation and trust
 - Privacy and legal issues
 - Security
 - Dynamic Service Composition for optimal Cooperative Distributed Business Process Management and Performance (CDBPMP) – the topic of the talk

Compositional Notations for WS

- Several ongoing initiatives define compositional notations for Web Services
- These notations express the flow of control and data across a collection of Web Services whose choreography performs a workflow
- Recently IBM, Microsoft and BEA released BPEL4WS (Business Process Execution Language for Web Services) <u>http://dev2dev.bea.com/techtrack/BPEL4WS.jsp#bpel4ws_to_c16502638</u>
- BPEL4WS is a specification for coordinating business process over the web
- May be viewed as a watershed event for industry as it:
 - □ represents the first step toward market consolidation,
 - replaces IBM's WSFL and Microsoft's XLANG specifications...

Current Landscape: Industry

(Standards... Not excessive)

- WS description **WSDL**:
 - defines services as collections of network endpoints or *ports*. A port is defined by associating a network address with a binding; a collection of ports define a service
- WS publication, registration, discovery UDDI:
 - provides a mechanism for clients to find web services. A UDDI registry is similar to a CORBA trader, or it can be thought of as a DNS service for business applications
- **WS** binding, invocation, communication **SOAP**:
 - is a message layout specification that defines a uniform way of passing XML-encoded data. In also defines a way to bind to HTTP as the underlying communication protocol. SOAP is basically a technology to allow for "RPC over the web"
- Drawbacks:
 - Merely syntactical capabilities
 - □ Mainly for **HUMAN** users

Yet Unsolved:

 Service semantic interoperability challenge – passive, static

- Means for providing service semantic interoperability infrastructure for intrinsically open systems (like the Web)
- Cooperative Distributed Service Provision (CDSP) – active, dynamic
 - Means for cooperative service provision by intelligent distributed open systems (of agents)

WS Domain is Becoming Hot (ter)!

Events (upcoming, just some of them to mention):

- □ eCOMO workshop series at ER CfP has just been released
- □ The First International Conference on Web Services (ICWS'03)
- CAiSE Workshop on Web Services and e-Business Technology
- Web Services & Multimedia at IEEE MSE'2002
- International Workshop on Web Services: Modeling, Architecture and Infrastructure (WSMAI 2003) at the Fifth International Conference on Enterprise Information Systems (ICEIS'2003)

Invited Session on: <u>Automated Knowledge and Service Sharing</u> <u>in Agent-Enabled Concurrent Engineering</u> at 10th ISPE International Conference on Concurrent Engineering: Research and Applications (CE'2003), Madeira Island, Portugal

□ ... + lots of more (definitely, not less important)

Please

attend

WS Domain is Becoming Hot(ter)!

- Journals (upcoming, just some of them to mention):
 - IEEE Transactions on Systems, Man, and Cybernetics Part A: Systems and Humans. Special issue M-services - Web Services for the Wireless World
 - IEEE Computer. Special Issue on Web Services Computing
 - IIINEWIII Journal on "Web Semantics: Science, Services and Agents on the World Wide Web" <u>http://www.semanticwebjournal.org/</u>

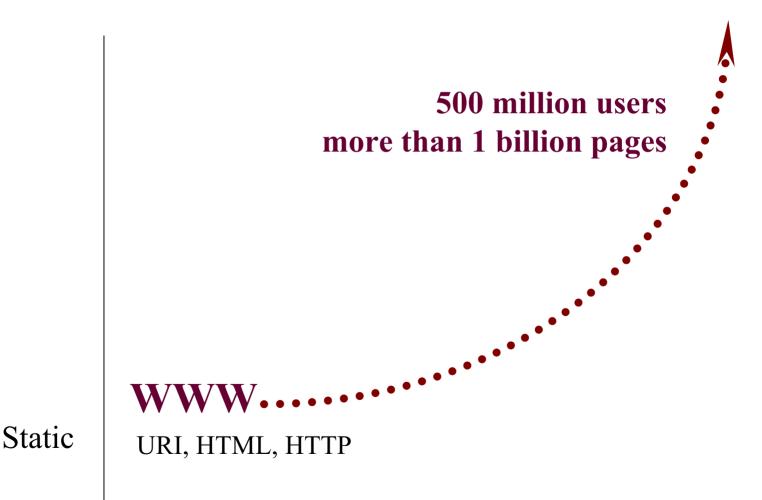
Current Landscape: R&D

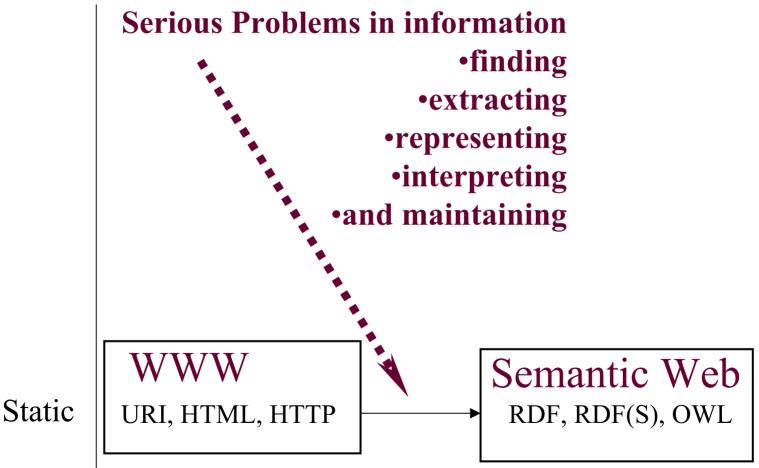
(Not excessive)

Some of the Key Players:

- Semantic Web Community <u>http://www.semanticweb.org/</u>
- DAML Services arm of the DAML program <u>http://www.daml.org/services/</u>
- OntoWeb European Network of Excellence <u>http://www.ontoweb.org/</u>

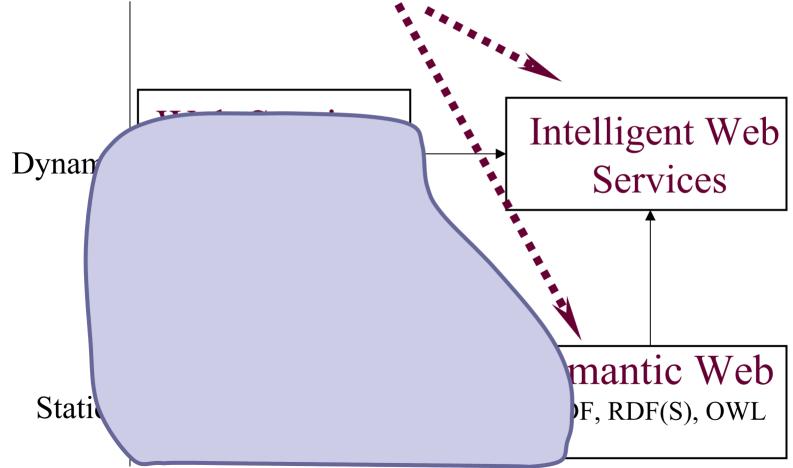
Some projects:


- Semantic Web enabled Web Services (IST) <u>http://swws.semanticweb.org/</u>
- Esperonto Services (IST) <u>http://www.esperonto.net/</u>


Current Landscape: R&D mainstream

- XML-based languages / ontologies
 WSFL, ebXML, BPML, RuleML, ...
- Frameworks
 - Stanford KSL Semantic Web Services Framework (Mcillraith et al.)
 - □ WSMF (Bussler, Fensel),

□ ...

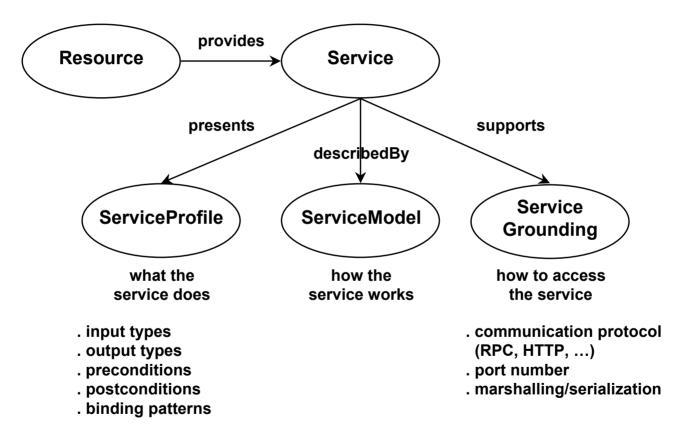

Going to present these frameworks (shortly)

Bringing the web to its full potential

Recall: Yet Unsolved ...

- Service semantic interoperability challenge passive
 - Means for providing service semantic interoperability infrastructure for intrinsically open systems (like the Web)
- Cooperative Distributed Service Provision (CDSP) - active
 - Means for cooperative service provision by intelligent distributed open systems (of agents)

Ontology-Based WS MarkUp passive


- DAML-S an extended DAML ontology language specification for providing semantic markup for Web Services
- DAML-S is being designed to support the following Web Service related tasks:
 - □ discovery
 - □ invocation
 - composition and interoperation
 - execution monitoring

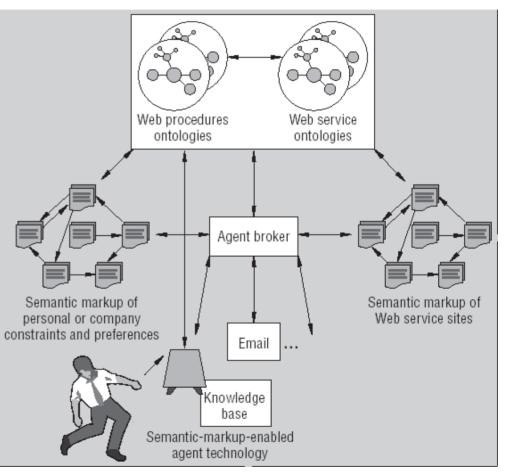
DAML-S: WS MarkUp

- DAML-S a declarative semantic extension to WS standards
- DAML-S provides a machine interpretable, ontology-backed semantic description (markup) of both atomic and composite Web-Services*:
 - Declarative advertisements for service properties and capabilities which can be used for <u>automatic service discovery</u>
 - Declarative APIs for individual Web Services that are necessary for <u>automatic Web Service execution</u>
 - Declarative specifications of the prerequisites and consequences of individual service use that are necessary for automatic service composition and interoperation

*McIlraith, S.A., Son, T.C. and Zeng, H. (2001) Mobilizing the Semantic Web with DAML-Enabled Web Services. In Proc. of the Semantic Web Workshop.

DAML-S: Upper Ontology of WS

Adopted from: Jorge Cardoso, Christoph Bussler, Amit Sheth and Dieter Fensel (2002) Semantic Web Services and Processes: Semantic Composition and Quality of Service. Tutorial at Federated Conferences On the Move to Meaningful Internet Computing and Ubiquitous Computer 2002, Irvine CA, October 2002.


Towards Cooperative Distributed Service Composition on the Semantic Wab

Frameworks Based on DAML-S MarkUp

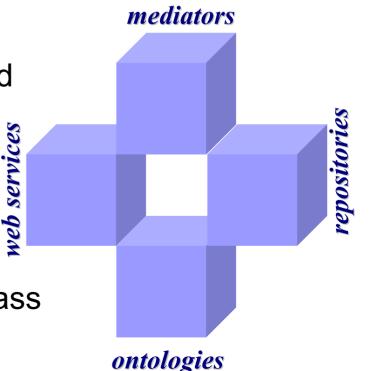
KSL, Stanford Univ. Semantic Web Services

framework composition:

- Semantic markup of Web services
- User constraints
- Web agent generic procedures
- In addition to the markup, the framework includes a variety of agent technologies - specialized services that use an agent broker to send requests for service to appropriate Web services and to dispatch service responses back to the agent

Source: McIlraith, S. A., Son, T. C. and Zeng, H. (2002) Semantic Web Services, IEEE Intelligent Systems. Sp. Issue on The Semantic Web, 16(2)

WSMF: the Philosophy


- The Conceptual Framework ...
- WSMF is to provide a rich conceptual model for the development and the description of web services
- The philosophy of WSMF is based on the following principles:
 - maximal de-coupling complemented by
 - scalable mediation service
- These are pre-requisites for applying semantic web technology for web service discovery, configuration, comparison, and combination

WSMF for e-Business: the Principles

- Fully enabled e-Business based on workable web services requires a modeling framework that is centered around two complementary principles:
 - Strong de-coupling of the various components that realize an e-Commerce application. This de-coupling includes information hiding based on the difference of internal business intelligence and public message exchange protocol interface descriptions
 - Strong mediation service enabling anybody to speak with everybody in a scalable manner. This mediation service includes the mediation of different terminologies as well as the mediation of different interaction styles

WSMF Constituents

- Ontologies that provide the terminology used by other elements and glue up formal semantics and real world semantics
- Goal Repositories that define the problems that should be solved by web services (pre- and postconditions)
- Web Services' descriptions that define various aspects of a web service
- Mediators which (attempt to) bypass interoperability problems

Agent-Based WS Composition active

RACING philosophy:

- Approach based on Cooperative Distributed Problem Solving (CDPS)
- Agents "wrap" Web Services
- Web Services are considered Agents' Capabilities
- The collection of Web Services (which are wrapped by a certain agent) forms its expertise, its role
- Agents negotiate to compose their services into more complex ones resulting in dynamic business processes, performed cooperatively

Workflow Enactment – a Social and an Intelligent Activity

- To mention that we are not alone...
- Workflow enactment by a multi-agent system is an example of cooperative problem solving. ... For cooperative problem solving to occur, an agent in the multi-agent society must recognize that the best path to achieving a goal is to enlist the help of other agents. Social commitments arise when one agent makes a commitment to another. Typically a social commitment comes about due to a social dependency."*

*Paul Buhler and José M. Vidal. (2003) <u>Semantic web services as agent behaviors</u>. In B. Burg, J. Dale, T. Finin, H. Nakashima, L. Padgham, C. Sierra, and S. Willmott, editors, *Agentcities: Challenges in Open Agent Environments*, pages 25-31. Springer-Verlag.

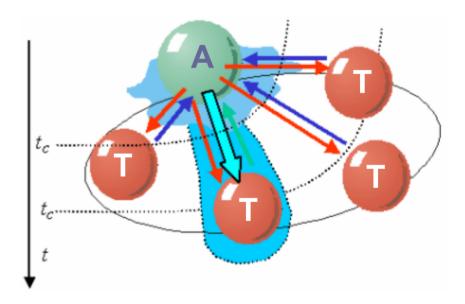
Towards Cooperative Distributed Service Composition on the Semantic Web

A sad story:

"BookRoundTrip" Scenario

- Service composition by an example...
- Travel planning scenario...
- Suppose, the dreams came true...:
 - Web Services are available at the desired level of semantic interoperation
 - Web Services are wrapped by intelligent (software) agents

The overall high-level (customer's) goal is to: BookRoundTrip(Kiev, UA, Tampere, FI, 07/10/2002, 12/10/2002, ER'2002)

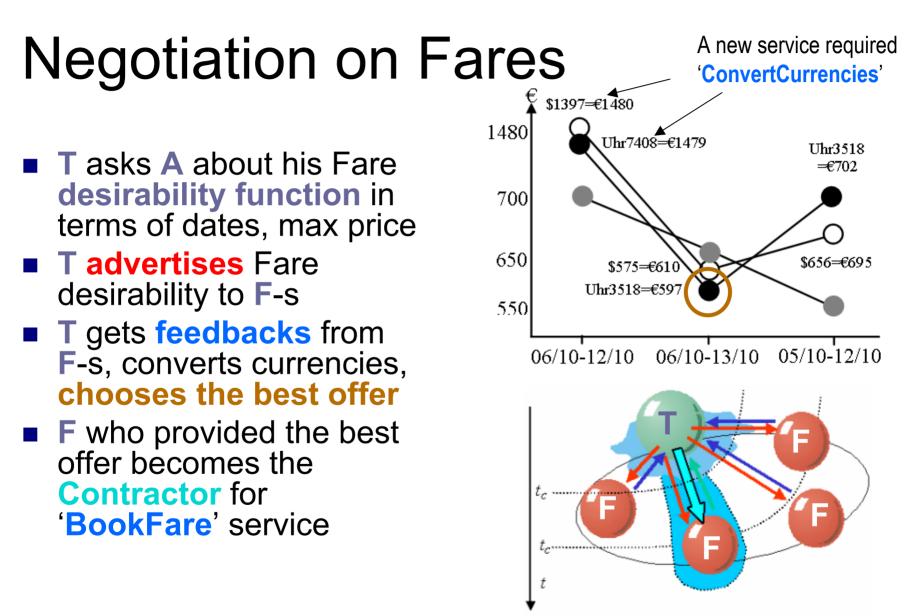

"BookRoundTrip" Scenario

• Agent roles:

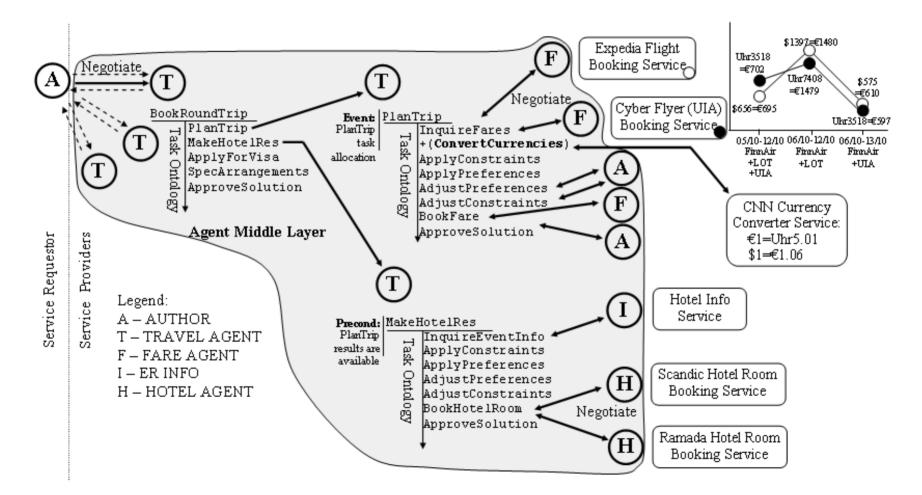
- AUTHOR (A) someone intending to attend ER conference workshop and requesting 'BookRoundtrip' service (to be composed)
- TRAVEL AGENT (T) the ones providing 'BookRoundtrip' service by generating and conducting corresponding task execution
- □ FARE AGENT (F) the ones providing various air fare information and booking services
- ER INFO (I) an agent providing information services on ER local arrangements, infrastructure, accommodation, etc in Tampere
- HOTEL AGENT (H) agents providing hotel room reservation services
- BUSINESS PARTNER (P) an agent representing A's business partner in Sweden with whom A intends to meet in Finland in time of the workshop to discuss a joint proposal

"BookRoundTrip" – High Level

- A negotiates (Contract NET IP) with several T-s about whom A believes that they are:
 - Capable to provide
 'BookRoundTrip' service
 - Credible enough for A to trust them in the context of 'BookRoundTrip' service provision


"BookRoundTrip" – High Level Negotiation

- A formulates the task proposition for T-s according to the Task Ontology*
- The Task Ontology is shared by A and T-s
- BookRoundTrip task (service) inputs are:


*Ermolayev, V. Keberle, N., Tolok, V. (2002) OIL Ontologies for Collaborative Task Performance in Coalitions of Self-Interested Actors. In: H. Arisawa, Y. Kambayashi, V. Kumar, H.C. Mayr, I. Hunt (Eds.):Conceptual Modeling for New Information Systems Technologies ER 2001 Workshops, HUMACS, DASWIS, ECOMO, and DAMA, Yokohama Japan, November 27-30, 2001. Revised Papers - LNCS vol. 2465, p. 390-402

Task Decomposition and Contracting

- The chosen T (the contractor) decomposes "BookRoundTrip" according to his local knowledge (the instance of the Task Ontology):
 - PlanTrip', 'ApplyForVisa', 'MakeHotelRes', 'SpecArrangements', ApproveSolution'
- PlanTrip' appears to be a complex thing as well:
 - □ 'InquireFares', 'ApplyConstraints', 'BookFare', 'ApproveSolution'
- T notices: Savings are possible due to Sunday Rule discounts
- **T decides** to discuss alternative dates:
 - □ Sat.,05-Thu.,10.10, Mon.,07-Sat.,12.10, Sun.,06-Sun.,13.10

'BookRoundTrip' Service Flow

Enumerating the Features

Intelligent Service Provider needs to:

- Have appropriate formal representation of the semantics of the services it is capable to perform
- Be capable to pro-actively adjust service parameters, assess requestor's preferences and constraints
- Be capable to negotiate in a rational way on optimal service provision and sub-service outsourcing
- Be capable of monitoring and assessing the capabilities and the credibility of other service providers
- Be capable to dynamically plan and synchronize the service execution flow

Agent-Based WS Mediation – the Principles (1)

- Composite services are interpreted as tasks comprising activities of varying granularity by Agent Middle Layer
- Service Mediator is formed dynamically as a coalition of Service Providing Agents (SPAs) participating in task execution
- SPAs join task coalition only for the time their service is required for the task
- SPAs are economically rational, autonomous, ready for cooperation

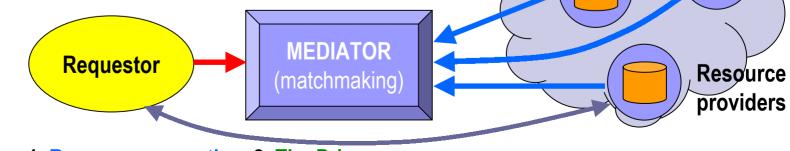
Agent-Based WS Mediation – the Principles (2)

SPAs are capable of:

- Incoming task decomposition according to its local knowledge (Task Ontology)
- Making arrangements for service (activity) outsourcing to another SPAs based on Contract Net negotiation
- Service (activity) outsourcing to the chosen contractor SPA
- Adjusting their beliefs on other SPAs' capabilities and evaluating SPAs' credibility through monitoring cooperative activities

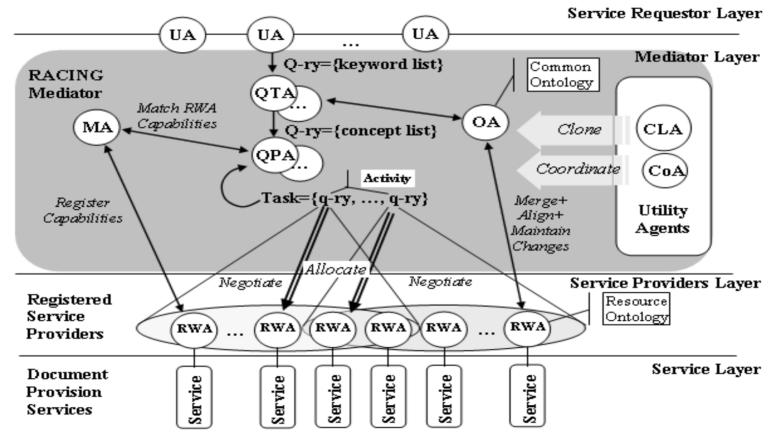
Agent-Based WS Mediation – the Principles (3)

- Services are self-contained modular loosely coupled program components wrapped by SPAs
- An SPA may allow another SPA (negotiation) to use its service by providing service context relocation
- Capabilities of an SPA are defined by the set of services it wraps


Colleges' Shoulders again:

• "... the semantic web and the emergence of a Web Services component model can facilitate agent-based workflow management in open environments. If agents are used to wrap semantically described Web Services, then the semantic service descriptions become the basis for determining the agent's first-order abilities. Likewise, a common semantic markup for Web Services will facilitate effective communication between agents."*

*Paul Buhler and José M. Vidal. (2003) <u>Semantic web services as agent behaviors</u>. In B. Burg, J. Dale, T. Finin, H. Nakashima, L. Padgham, C. Sierra, and S. Willmott, editors, *Agentcities: Challenges in Open Agent Environments*, pages 25-31. Springer-Verlag.


RACING: Agent-Mediated Services for Intelligent IR and Fusion

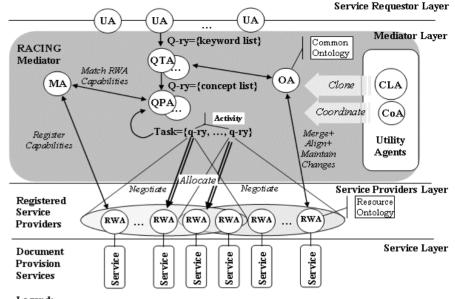
- In a Nutshell RACING approach is:
 - □ In exploiting **Agent-Service-Resource** wrapping hierarchy
 - For getting possibilities to apply CDPS technique in Intelligent Rational Information Retrieval and Information Fusion
- **Overall high-level goal** for the RACING mediator is to:
 - deliver semantically matching (to the requestor's query) result (a resource or a set of resources)
 - □ for a rationally negotiated incentive
 - □ In the agreed time

Matchmaking: 1. Resource semantics; 2. The Price

RACING: Mediator Architecture

Legend:

UA – User Agent, QTA – Query Translation Agent, QPA – Query Planning Agent, RWA – Resource Wrapper Agent, OA – Ontology Agent, MA – Matchmaking Agent, CLA – Cloning Agent, CoA – Coordination Agent

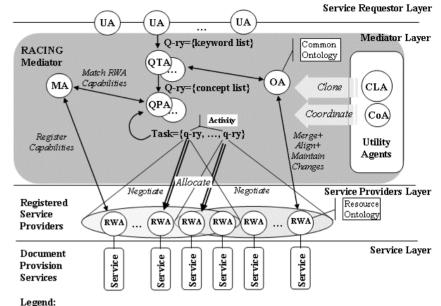

RACING: Mediator Functionalities

- User Request Processing
- Resource Provider (wrapper) Registration
- Common Ontology Maintenance
- Performed as tasks (distributedly orchestrated dynamic business processes) and exploit various types of negotiation

Towards Cooperative Distributed Service Composition on the Semantic Web

RACING: User Request Processing

- UA: formulates (<u>assists in</u>) the query in terms of the key phrases familiar to the given user
- UA: generates and manages the execution of the query processing task: 'CloneQTA', 'TranslateQry', 'CloneQPA', 'Execute
 - 'TranslateQry', 'CloneQPA', 'ExecuteQry' Cloning activities are outsourced to CLA (utility agent), which clones QTA and QPA for query processing
- QTA performs the translation of the query predicate in terms of keywords to semantically equivalent query predicate in terms of the concepts of mediator's common ontology
- QPA generates the following set of activities for 'ExecuteQry' task:
 'DecomposeQry', 'PerformQryset'

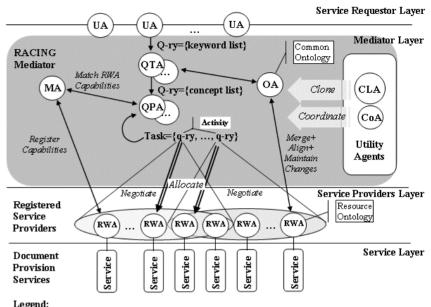


UA – User Agent, QTA – Query Translation Agent, QPA – Query Planning Agent,
 RWA – Resource Wrapper Agent, OA – Ontology Agent, MA – Matchmaking Agent,
 CLA – Cloning Agent, CoA – Coordination Agent

Towards Cooperative Distributed Service Composition on the Semantic Wab

RACING: User Request Processing

- QPA performs query decomposition in order to extract the parts of the incoming query, which may require different capabilities from document service providers
- The extraction is guided by topic classification of the common mediator ontology

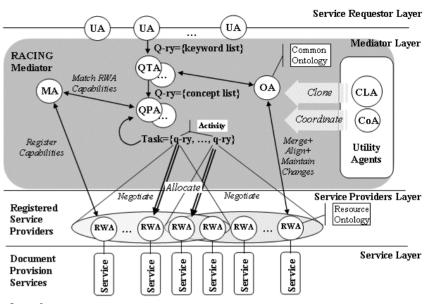

UA-User Agent, QTA - Query Translation Agent, QPA - Query Planning Agent,
 RWA - Resource Wrapper Agent, OA - Ontology Agent, MA - Matchmaking Agent,
 CLA - Cloning Agent, CoA - Coordination Agent

- Resulting set of partial queries is performed by QPA as the following activity sequence: 'MatchRWA', 'PerformQry'.
- 'MatchRWA' activity is negotiated with and outsourced to MA
- MA returns the list of RWAs capable to perform document providing services relevant to the partial query

Towards Cooperative Distributed Service Composition on the Semantic Wab

RACING: User Request Processing

- QPA negotiates 'PerformQry' activity with matching (results from MA) RWAs in terms of:
 - □ service 'overheads' over time
 - □ and document price
- QPA chooses the contractor RWA for 'PerformQry' execution



UA – User Agent, QTA – Query Translation Agent, QPA – Query Planning Agent,
 RWA – Resource Wrapper Agent, OA – Ontology Agent, MA – Matchmaking Agent,
 CLA – Cloning Agent, CoA – Coordination Agent

- Contractor RWA receives the partial query in terms of Common Mediator Ontology
- RWA needs to translate the query into the terms of its Resource Ontology
- RWA outsources the translation activity to OA
- RWA than invokes wrapped document service with the translated query and returns documents relevant to the query to QPA

RACING: Wrapper Registration

- It is assumed that RWA directory is maintained by a dedicated Matchmaker Agent (MA)
- Registration task is initiated by an RWA
- RWA provides the list of topics in terms of its Resource Ontology to which it is capable to deliver documents

Legend:

UA- User Agent, QTA- Query Translation Agent, QPA - Query Planning Agent, RWA - Resource Wrapper Agent, OA - Ontology Agent, MA - Matchmaking Agent, CLA - Cloning Agent, CoA - Coordination Agent

- MA outsources ontology alignment activity to OA
- OA performs incoming resource ontology alignment and merging to Common Ontology and returns the list of translated topics to MA
- MA stores the list of translated topics to the directory entry of the new RWA

Concluding Remarks

- Approach to how diverse web services may be composed and mediated by means of middle agents and their coalitions performing tasks for service requestors
- Such a mediation may substantially enhance today's solutions for web service provision
- The approach is grounded on CDPS technique and on the results obtained in agent-enabled business process modeling and management
- Still there is the long road to go. Some statements may therefore seem to be provocative
- Still there are no fully implemented solutions, yet.
 Ongoing activities are targeted to such kind of implementation:
 - □ E.g.: **RACING** project <u>http://www.zsu.zp.ua/racing/</u>

Feature Sample^{*}: Appointments Planning

- The entertainment system was belting out the Beatles' "We Can Work It Out" when the phone rang. When Pete answered, his phone turned the sound down by sending a message to all the other local devices that had a volume control
- His sister, Lucy, was on the line from the doctor's office: "Mom needs to see a specialist and then has to have a series of physical therapy sessions. Biweekly or something. I'm going to have my agent set up the appointments."
- Pete immediately agreed to share the chauffeuring

^{*} **Tim Berners-Lee, James Hendler and Ora Lassila** (2001) The Semantic Web, Feature article In Scientific American, May, 2001 issue

Feature Sample^{*}: Appointments Planning

- At the doctor's office, Lucy instructed her Semantic Web agent through her handheld Web browser
- The agent:
 - promptly retrieved information about Mom's prescribed treatment from the doctor's agent,
 - □ looked up several lists of **providers**,
 - □ checked for the ones in-plan for Mom's insurance:
 - within a 20-mile radius of her home
 - and with a rating of excellent or very good on trusted rating services
 - It then began trying to find a match between available appointment times (supplied by the agents of individual providers through their Web sites) and Pete's and Lucy's busy schedules

The greatest thing we may learn from this feature...

- Is that The Beatles will last forever!!!
- It is also topical that the Semantic Web is supposed to ensure this through Agents and Web Services (composed by agents in an intelligent and social way) ...
- Just one more thing to justify that we are likely not wasted time ...

A funny fact is ... (31.01.2003,15:42)

Search criterion: cooperative+distributed+service+composition+semantic+web

File Edit View Go Bookmarks Tools Window Help	
	o 🕗
🔺 🗇 🚮 Home 🌆 Netscape 🔍 Search 🛛 Bookmarks 🛇 Internet 🗂 Lookup 🗂 New&Cool 📎 RealPlayer Ho	
C Google-Suche: Cooperative Distributed Serv	\mathbf{X}
Google TM Enveiterte Suche <u>Einstellungen</u> <u>Sprach-Tools</u> <u>Suchtipps</u> Cooperative Distributed Service Comp <u>Google-Suche</u>	
Suche: C Das Web C Seiten auf Deutsch C Seiten aus Österreich	
Web Bilder Groups Verzeichnis	2.500
Das Web wurde nach Cooperative Distributed Service Composition Semantic Web durchsucht. Resultate 1 - 10 von ungefä Tipp: In den meisten Browsern können Sie einfach auf die Eingabetaste drücken, anstatt auf "Google-Suche" zu klicken.	nr 3,560.
Colloquia - [Diese Seite übersetzen] Sponsoren-Lind Informatics Colloquium. Prof. Dr. Vadim Ermolayev. Towards Cooperative Semantic Web. Zum Vortrag: Distributed Service Composition on the Semantic Web. Zum Vortrag: SemantikBrowser www.ifi.uni-klu.ac.at/Colloquia/0206Ermolayev - 20k - 29 Jan. 2003 - Im Archiv - Ähnliche Seiten SemantikBrowser David Edmond's homepage - [Diese Seite übersetzen] www.semantikbrow Applications of reflection for cooperative information systems, PhD thesis description Sehen Sie Ihre And of non-functional service properties, Distributed and Parallel Sehen Sie Ihre And sky.fit.qut.edu.au/~edmond/ - 13k - Im Archiv - Ähnliche Seiten Ahnliche Seiten	aschine. uche! /Ser.de
Semantic Web Services and Processes: Qos, Discovery, Composition - [Diese Seite übersetzen] International Journal of Cooperative Information Systems Composite Web Service: Performance Evaluation and Simulation IntelliGEN: A Distributed Workflow System Isdis.cs.uga.edu/proj/meteor/SWP.htm - 14k - Im Archiv - Ähnliche Seiten Speakers Bio - [Diese Seite übersetzen] a critical component of Quality of Service, and use include peer-to-peer systems, distributed and real International Journal of Cooperative Information Systems	

More Coverage of the Topic: Semantic Web Services and Processes: Semantic Composition and Quality of Service

Jorge Cardoso¹, Christoph Bussler², Amit Sheth^{1, 4}, Dieter Fensel³ ¹LSDIS Lab, Computer Science, University of Georgia ²Oracle Corporation ³ Universität Innsbruck ⁴ Semagix, Inc

> Tutorial at Federated Conferences On the Move to Meaningful Internet Computing and Ubiquitous Computer 2002, Irvine CA, October 2002.

Web Resource for this tutorial: http://lsdis.cs.uga.edu/lib/presentations/SWSP-tutorialresource.htm

Shall be happy ...

... To answer your questions