Ontology Dynamics

X Vadim Ermolayev

a knowledge engineer
 Intelligent Systems, Dept of IT,
 Zaporizhzhya Natl Univ.
 Ukraine

vadim@ermolayev.com http://ermolayev.com/

FP7 Marie Curie IRSES project

University of Huddersfield, PARK meeting: Feb. 9, 2015

- Not a narrow-focused approach/technique
- Instead, a broader view motives ...
 - Like "I have a dream ..."
 - Shallow, but can go deeper if interested
- Looking at analogies
- Giving an example
 - Something done in my group
 - By people you've seen here
- Sketching out potential R&D problems
- Hopefully provoking questions

Kinematics and Dynamics

• Mechanics:

- Kinematics studies the <u>motion</u> of objects without reference to its causes
- Dynamics is concerned with the study of forces and torques and their <u>effect on motion</u>
- Motion: change of position

Knowledge representation and management:

- What is **motion** for knowledge representations?
 - Also the **change** of ... be detailed later
- What are the **forces** and **torques**?
 - Also effects on motion ...

System Dynamics

- System Dynamics studies the behaviour of (complex) systems over time
 - The behaviour of the entire system is affected by internal feedback (causal) loops and time delays
- Knowledge representation and management:
 - What is "behavior" wrt knowledge representations?
 - Also the change of ...

Population Dynamics

- Studies:
 - Short- and long-term changes in the <u>size and age</u> <u>composition</u> of populations
 - E.g. ageing or population decline
 - Biological and environmental processes influencing those changes
- **Deals with** the way populations are **affected by**:
 - Birth and death rates
 - Immigration and emigration
- Knowledge representation and management:
 - What is **birth** and **death** in ontology populations?
 - How these populations migrate?

Kinematics OR Dynamics?

- What we do in ontology change and evolution, is it:
 - Dynamics?
 - or Kinematics?

Kinematics OR Dynamics?

- What we do in ontology change and evolution, is it:
 - Dynamics?
 - or Kinematics?
- A: Kinematics:
 - Study of and respond to changes/differences
 - Do NOT really analyze the causes and triggers of change

Kinematics OR Dynamics?

- What we do in ontology change and evolution, is it:
 - Dynamics?
 - or Kinematics?
- A: Kinematics:
 - Study of and respond to changes/differences
 - Do NOT really analyze the causes and triggers of change
- Dynamics more powerful ... example

– A trajectory, also the **change** in ... motives:

A PhD student/Junior

A Prof/Senior

– A trajectory, also the **change** in ... motives:

A PhD student/Junior

A Prof/Senior

– A trajectory, also the **change** in ... motives:

A PhD student/Junior

– A trajectory, also the **change** in ... motives:

– A trajectory, also the **change** in ... motives:

– A trajectory, also the **change** in ... motives:

– A trajectory, also the **change** in ... motives:

A Law of Gravity?

- For the "motion" of knowledge representations, is there a(n analogue of a):
 - Newton's law?
 - Law of gravity?
 - Notion of entropy?
 - Feedback and causal loop model?
 - Mendel law?
 - Exponential growth model?
 - A system law?
 - Etc. of the kind ...
- A positive answer will help a lot:
 - Reasons for the change in knowledge
 - More intelligent and efficient workflows
 - Limits for the scalability of KBS
 - Big Data/Knowledge settings

Aspects/Kinds of "Motion"

- <u>Not complete</u> just to outline the foci of interest ...
 - E.g. moving between network locations not very much interested
- Temporalized representations
 - Also a change of state. E.g. in versioning (Natalya)
- Change in shape (Ontology Schema)
 - Also the change in representation language
 - OntoElect, ontology learning (Olga, Eugene)
- Change in population (Individuals)
 - Ontology instance migration (Maxim)
- Change in pragmatic **context** (e.g. Domain)
 - E.g. would my process ontology for MIC Design fit also for Automotive? Would there be a change?
- Alltogether, inspired by Evolutionary Biology
 - Evolving Knowledge Ecosystems (myself in coop with JU.fi, vestforsk.no)

Details: Ermolayev, V., Akerkar, R., Terziyan, V., Cochez, M.: Towards Evolving Knowledge Ecosystems for Big Data Understanding. In: Akerkar, R. (ed.) Big Data Computing, pp. 1-55, Taylor & Francis, 2013, ISBN <u>978-1-46-657837-1</u>

OntoElect: Change to Fit

- Ontology refinement methodology
- Ensures better ontology fitness through iterations
 - WRT stakeholder requirements
- Responds to the changes in stakeholder requirements
 - Tacit not revealed explicitly
 - Evidence(s) learnt from the documents written by the stakeholders
 - Treated as stakeholder "votes"
 - Representativeness/Completeness assessed by measuring "saturation"

OntoElect: Change to Fit

- Ontology refinement methodology
- Ensures better ontology fitness through iterations
 - WRT stakeholder requirements
- Responds to the changes in stakeholder requirements
 - Tacit not revealed explicitly
 - Evidence(s) learnt from the documents written by the stakeholders
 - Treated as stakeholder "votes"
 - Representativeness/Completeness assessed by measuring "saturation"
- Kinematics:
 - Ontology schema change, between the versions
 - Measured and shaped out using the fitness metric

Details: Tatarintseva, S., Ermolayev, V., Keller, B., Matzke, W.-E.: Quantifying Ontology Fitness in OntoElect Using Saturation- and Vote-Based Metrics. In: Ermolayev, V., et al. (Eds.) ICTERI 2013, CCIS Vol. 412, pp. 136–162, Springer, 2013, <u>http://link.springer.com/chapter/10.1007/978-3-319-03998-5_8</u>

OntoElect: Change to Fit

- Ontology refinement methodology
- Ensures better ontology **fitness** through iterations
 - WRT stakeholder requirements
- Responds to the changes in stakeholder requirements
 - Tacit not revealed explicitly
 - Evidence(s) learnt from the documents written by the stakeholders
 - Treated as stakeholder "votes"
 - Representativeness/Completeness assessed by measuring "saturation"
- Kinematics:
 - Ontology schema change, between the versions
 - Measured and shaped out using the fitness metric
- Dynamics:
 - What is the decisive "critical mass" of new evidence that causes a change?

– Majority vote (50%+1) OR a **minority vote** that matters?

Details: Tatarintseva, S., Ermolayev, V., Keller, B., Matzke, W.-E.: Quantifying Ontology Fitness in OntoElect Using Saturation- and Vote-Based Metrics. In: Ermolayev, V., et al. (Eds.) ICTERI 2013, CCIS Vol. 412, pp. 136–162, Springer, 2013, <u>http://link.springer.com/chapter/10.1007/978-3-319-03998-5_8</u>

OntoElect: Time Ontos Case

- The review of Time ontologies on the Semantic Web
 - ZNU and HUD, SemData project
- Questions:
 - Are the existing ontologies of time fit for the community requirements?
 - Do we have enough evidence from the community?
 - What is the minimal decisive set of evidence(s) that pictures the gaps?
- Community:
 - Temporal Representation and Reasoning
- Evidence(s):
 - Ranked sets of multi-word Terms
 - Extracted from their (representative?) document corpus
 - Full texts of the Proc. of TIME Symposia series, 1994 2013, ~440 papers, <u>http://time.di.unimi.it/TIME_Home.html</u>

```
Details: Ermolayev, V., Batsakis, S., Keberle, N., Tatarintseva, O., Antoniou, G.: Ontologies of Time: Review and Trends. Int. J. of Computer Science & Applications. 11(3), 57–115, 2014, 
http://www.tmrfindia.org/ijcsa/v11i34.pdf
```

Do we have Enough?

- Full texts:
 - Sorted in their chronological order,
 - Transformed to plain texts
 - Grouped in incremental slices
- For each slice S_i :
 - Extracted* the bag of Terms, ranked by score (sc)
 - Computed normalized scores (*nsc*)
 - Produced Termhood T_i by filtering out insignificant Terms (*nsc<eps*, *eps* computed to retain 50%+1 Term)
 - Computed absolute and relative termhood difference values: thd(*T_i*, *T_{i-1}*); *thdr=thd*/∑*nsc*
- * TerMine service by the UK National Centre for Text Mining (NaCTeM, <u>http://www.nactem.ac.uk/</u>). Scores computed using NaCTeM's multi-word term recognition technique (Frantzi *et al.,* 2000).

20 incremental slices: 1994 1994+1995 1994+1995+1996

1994+ + 2013

Do we have Enough?

Collection	Terms	in the			41.0/				
Slice	Bag of Terms	Termhood	eps	thd, value	thar, %				
1994	8546	838	3.0000	54.4448	100.0000				
1994-1995	14597	1179	3.1699	35.9807	62.3806				
1994-1996	23992	1548	3.7549	36.0855	59.6366				
1994-1997	31427	2104	4.0000	23.7044	35.4153				
1994-1998	38122	2183	4.7549	22.4341	30.7901				
1994-1999	42788	2400	5.0000	14.9911	18.7218				
1994-2000	49986	2821	5.0000	17.4853	20.7287				
1994-2001	59294	3430	5.0000	23.1877	26.9035				
1994-2002	65627	3767	5.0000	13.1819	15.3747				
1994-2003	75171	3584	5.6147	25.0810	36.7663				
1994-2004	81617	3893	6.0000	9.6005	13.8278				
1994-2005	91692	4410	6.0000	13.3894	19.7595				
1994-2006	101190	4903	6.0000	9.0502	12.6376				
1994-2007	108203	5255	6.0000	7.3260	9.8946				
1994-2008	115493	5658	6.0000	8.5976	11.7790				
1994-2009	121832	6007	6.0000	6.6174	9.0302				
1994-2010	128171	5564	6.3043	6.3422	9.0829				
1994-2011	137918	6043	6.3399	13.0734	20.2061				
1994-2012	145173	6109	6.3549	5.1033	8.0395				
1994-2013	151075	6259	6.6667	5.4895	8.7677				

- Termhoods became saturated
 - Termhood Difference goes below Individual Term Significance
- Terminological shift in time
 - Still not 0. Indicates domain changes over time
- The (representative) majority vote, but still too many terms retained

No of retained terms

Absolute Termhood Difference (*thd*) and Individual Term Significance threshold (*eps*)

A Decisive Minority Vote?

- Terminology contribution peaks: 2001, 2003, 2005, 2008, and 2011
- Citation info collected (Google Scholar)
- Paper impact computed based on citation frequency (*cfr*)
- Papers with *imp=n* replicated n times – changing the incremental slices
- *thd| thdr| eps* re-computed
- Strong correlation
- Termhood based on high-impact (24) papers only
- 686 Terms vs 6,109
 - The "influence" that triggers change

$$imp = \begin{cases} [0.2 \times cfr] + 1, cfr > 0\\ 0, cfr = 0 \end{cases}$$

Influence: Bag of Onto Tokens

	Score	Term	Logic	Problem	Formula	Formalism	Operator	Method	Model	Reasoner	Domain	Language	Feature	Constraint	Instance	Pattern	Application	Project	Author	
		Total No of terms: 686	4	27	۰	36	~	22	24	-	4	~	175	28	-	13	110	-	178	
ſ	147.11	temporal logic	×																	
ľ	100.11	calendar pattern														~				
[86.54	temporal constraint												1						
ſ	68.73	temporal operator					<													
ſ	59.58	fuzzy match											~							
ſ	52.25	temporal structure											✓							
ſ	49.83	calendar schema											~							
ſ	46.25	temporal representation				1														
ľ	41.00	temporal reasoning						✓												
ľ	40.00	freeze quantifier				~														
ſ	37.73	fuzzy interval											1							
ſ	36.36	xml document															✓			
ĺ	36.00	crisp interval											~							
ĺ	34.00	satisfiability problem		1																

A Clock is a specific TemporalMeasure which measures TimeInstants on a TimeLine by taking the value of current time from the TimeInstant instance of *Present*. A Clock is always associated with a particular single TimeLine (though there could be TimeLines with no Clock). The Clocks which are associated with different TimeLines may "run" quicker or slower compared to each other – thus reflecting the velocities of the time flow characteristic to their TimeLines. These Clocks may be syncronized based on the use of the appropriate ScaleFactor (which is a Rule for comparing the time values of different Clocks). The granularity of the time value, provided by a Clock, is specified by the used TimeUnit.

+ OWL

... ongoing work ...

Ontology Token

Ontology Fitness

- Token mappings:
 - t ontology token (central concept, properties)
 - r relationship {equivalence, membership, subsumption, meronymy, association}
 - o- ontology element
 - cf confidence factor
- Positive votes:
 - $v_o = ns \times w(r) \times cf$ ns – normalized score of the corresponding term (central concept)
 - w(r) mapping relationship type weight
 - *cf* mapping *cf*
- Propagated votes:
 - Reflect the contribution of *o* to the semantics of the ontology element o^{sub} subsumed by o
 - att attenuation coeff, chosen empirically
- Negative votes:
 - No mapping missing in O or contradicts to some o
- **Fitness**

$$\Phi_O = \Phi_O + \sum_{o \in O} v_o + \sum_{o \in O} v_o^p + \sum_{t \in T^{miss}} v_t^-$$

$$v_o^p = att \times v_{o^{sub}}$$

 $\mu = (t, r, o, cf)$

$$v_{t_i}^- = -ns_i$$

Competing Ontologies

- Seams to be an equilibrium system
- A Law of "Preservation of Fitness" OR "Ontology Entropy"
 To be further researched
- Target 50%+1 (OntoElect)

Domain B

PARK meeting

Domain A

Some Conclusions

- In Ontology change and evolution studies:
 - Lack of focus on Dynamics vs Kinematics
- The "Laws of Dynamics" may be sought:
 - Looking at the analogies in:
 - System Dynamics
 - Population Dynamics
 - Statistical Mechanics
- Ontology Fitness:
 - May perhaps be used as an adequate feature for the "Laws of Dynamics"
 - Seems to be useful in:
 - Ontology refinement
 - Ontology reuse across domains
 - Choosing the best ontology among alternatives

Will be happy to answer your questions ...

Will be also happy to continue discussions ...

Room CW1/13, vadim@ermolayev.com

