

32nd Annual IEEE International Computer Software and Applications Conference 3d IEEE Workshop on Engineering Semantic Agent Systems

An Ontology of Environments, Events, and Happenings

Vadim Ermolayev, Natalya Keberle Knowledge representation Zaporozhye National University

Wolf-Ekkehard Matzke Cadence Design Systems GmbH Agents, domain expertise

Outline

- Material that is important, but not in the paper ...
 - Space constraints, or some progress beyond the CR
- Why do we need E2H in Performance Simulation
 Initiative?
- What is the place of E2H ontology in our KR framework?
- What are the (reasons for) our ontological choices?
 With examples ...
 - Environments; Time; Events versus Actions; Events Versus Happenings
- Implementation and Use

Performance Simulation Initiative

- R&D project of Cadence Design Systems GmbH
 - 2005 ongoing
 - Goal: Assess and Manage Performance in Engineering Design
 - Domain: Microelectronics and Integrated Circuits
 - Method: knowledge-intensive, agent-based simulation of:
 - A Design System and
 - A Dynamic Engineering Design Process
- A "horizontal" framework:
 - Plugged-in focused activities
 - Cooperation with other projects
 - PRODUKTIV+ (BMBF, <u>http://www.edacentrum.de/produktivplus/</u>)
 - ACTIVE IP (EC FP7, <u>http://active-project.eu/</u>)

cādence

Peter van Staa, Inv. talk at HoloMAS'2007

Performance Assessment and Management

Engineering Design Processes, Microelectronics and IC

"Design productivity breakthroughs [are] mandatory to win the design race!"

Peter van Staa, Bosch Automotive Electronics

Inv. talk at HoloMAS'2007

Environments, Events, Happenings

and Observers

- Event: a manifestation of a Phenomenon which can be sensed (and measured)
 - Phenomenon: season change
 - Event: Spring
- Happening: an act of Event sensing by a particular Observer
 - in different Environments:
 - I sensed Spring in Australia (take-off), but Autumn in Europe (landing)
 - By different **Observer**s:
 - I sensed a flight attendant passing by
 - But my buddy a rabbit crossing the runway
- Environment: a temporal aggregation of Objects which surround the Object or the Process
 - Object: Me or Process: Take-off
 - Environment: The aircraft, the crew, the other passengers, the runways, the control tower, the rabbits and the seagulls around, ...

Environments, Events, and Happenings in PSI

- Agent-based simulation:
 - Nested, dynamic, stochastically influenced Environments
 - Collaborative, loosely defined, ramified, "stochastic" **Process**es
 - Actors playing different Roles in different Processes

Environments, Events, and Happenings in PSI

Examples in Microelectronics and IC Design

- Environments:
 - Of an Engineering Design Process:
 - A Design System
 - Of a Designer previous slide
- Events:
 - Internal to a Design System: Netlist Design Artifact representation for the designed chip has met quality requirement
 - External: Spec change by a customer
- Happenings:
 - I found out that the Netlist provided by my fellow college is crap
 - My fellow college found the bug in my GDS II layout
 - I noticed that the block design provided by ABC does not fit the interface

PSI Environment-Event-Happening Ontology

PSI Time

- Linear, anisotropic, discrete (Time Crisp)
- Time intervals are fuzzy (Time Fuzzy)
 - "Springing" schedules
 - Accounting for stochastic appearance

cādence

11 ESAS: July 28, 2008 Copyright (c), 2008, Cadence Design Systems, Inc.

Time Fuzzy: Extension of Time Crisp (Allen)

• Fuzzy time interval: $I = \{T^b, T^i, T^e, f\}$

- T^{i} the Core inner instants
- Beginning and Ending sets:
 - Beginning $(T^b = \{t^b_j\}): \forall t^b_j: t^b_j > t^b \rightarrow t^b_j \in T^i$
 - Ending $(T^e = \{t_j^e\}): \forall t_j^e : t_j^e < t^e \rightarrow t_j^e \in T^i$
- Discrete membership function: $f: Z \rightarrow [0,1]$ individual for Agents
- Thresholds: reputation and confidence
- Rich set of axioms extending Allen's time interval logic
- More details in our UNISCON 2008 paper Ermolayev, V., Keberle, N., Matzke, W.-E., Sohnius, R.: Fuzzy Time Intervals for Simulating Actions. In: Kaschek, R., Kop, C., Steinberger, C. and Fliedl, G. (Eds.) Information Systems and Business Technologies. Proc. 2nd Int. Conf. UNISCON 2008, Apr. 22 – 25, 2008, Klagenfurt, Austria, LNBIP Vol. 5, 429-444

Event vs Action

- Occasionality vs pro-activity
- Event:
 - Objective manifestation of a tangible change in an Environment
- Action:
 - A kind of an Event
 - Performed by Agent
 - Who has a goal to be reached
 - Decision

Falling (unintentional)

Acting (pro-active)

Event vs Action

- Occasionality vs pro-activity
- Event:
 - Objective manifestation of a tangible change in an Environment
- Action:
 - A kind of an Event
 - Performed by Agent
 - Who has a goal to be reached

Event vs Action

- Occasionality vs pro-activity
- Event:
 - Objective manifestation of a tangible change in an Environment
- Action:
 - A kind of an Event
 - Performed by Agent
 - Who has a goal to be reached

ice Design Systems, Inc.

Event vs Happening

- A Happening is the perception of the Event by the Observer situated in the Environment
 - Happening \rightarrow PSI-META:AtomicAction
 - Happening is instant (no duration)
 - Happening is performed by an Observer
 - Observer \rightarrow PSI-META:Agent
- Event: Petrol retail price change
- Happening: I got the receipt with the new petrol price

Simulation Tool: WBS generation

Simulation Tool: Design Process Simulation

Summary and Outlook

- E2H ontology provides new modeling features for open, dynamic and semantically rich domains
 - e.g. Engineering Design
- E2H has been implemented (OWL-DL) a part of the Core of PSI Suite of ontologies v.2.2
- E2H has been evaluated (as part of PSI Core) using Shaker Modeling Methodology for Ontology Refinement
 - More details in our ER 2008 paper
- E2H is used (as part of PSI Core, Crisp Time) in Cadence Process Planning Expert System
- Future work:
 - Time Fuzzy enhancement used in Cadence Software
 - E2H refinement to model context sensitivity (e.g. for FP7 ACTIVE IP)

Questions Please

20 ESAS: July 28, 2008 Copyright (c), 2008, Cadence Design Systems, Inc.