
International Journal on Artificial Intelligence Tools
Vol. XX, No. X (2011) 1–32
 World Scientific Publishing Company

1

INSTANCE MIGRATION BETWEEN ONTOLOGIES
HAVING STRUCTURAL DIFFERENCES

MAXIM DAVIDOVSKY

Dept of Mathematical Modeling, Zaporozhye National University, 66 Zhukovskogo st.,
Zaporozhye, 69063, Ukraine
m.davidovsky@gmail.com

VADIM ERMOLAYEV

Dept of Information Technologies, Zaporozhye National University, 66 Zhukovskogo st.,
Zaporozhye, 69063, Ukraine

vadim@ermolayev.com

VYACHESLAV TOLOK

Dept of Mathematical Modeling, Zaporozhye National University, 66 Zhukovskogo st.,
Zaporozhye, 69063, Ukraine
vyacheslav-tolok@yandex.ru

Received (11 March 2011)
Revised (30 May 2011)

Accepted (Day Month Year)

Ontology instance migration is one of the complex and not fully solved problems in knowledge
management. A solution is required when the ontology schema evolves in the life cycle and the
assertions have to be transferred to the newer version. The problem may become more complex in
distributed settings when, for example, several autonomous software entities use and exchange
partial assertional knowledge in a domain that is formalized by different though semantically
overlapping descriptive theories. Such an exchange is essentially the migration of the assertional part
of an ontology to other ontologies belonging to or used by different entities. The paper presents our
method and tool for migrating instances between the ontologies that have structurally different but
semantically overlapping schemas. The approach is based on the use of the manually coded
transformation rules describing the changes between the input and the output ontologies. The tool is
implemented as a plug-in for the ProjectNavigator prototype software framework. The article also
reports the results of our three evaluation experiments. In these experiments we evaluated the degree
of complexity in the structural changes to which our approach remains valid. We also chose the
ontology sets in one of the experiments to make the results comparable with the ontology alignment
software. Finally we checked how well our approach scales with the increase of the quantity of the
migrated ontology instances to the numbers that are characteristic to industrial ontologies. In our
opinion the evaluation results are satisfactory and suggest some directions for the future work.

Keywords: ontology; structural difference; instance migration; methodology; software tool.

1. Introduction

Instance migration is an important phase in ontology engineering and management
activities. A large number of ontologies describing similar domains from different

Maxim Davidovsky, Vadim Ermolayev, Vyacheslav Tolok

2

viewpoints have been developed to date. Therefore an effective re-use of their assertional
knowledge is rational. Ontology instance re-use is also essential in ontology evolution.
When a new ontology version is developed it is often necessary to transfer the instances
of the previous version(s) to the newer version. The development of a newer ontology
version starts with the implementation of the required changes in its TBox. Therefore the
reuse of the ABox could be ensured if the elements of the ABox are accordingly
transformed. Assertional parts of ontologies can contain a large quantity of instances that
in turn makes manual transformations and instance transfer a laborous task.

The article presents our approach to semi-automated instance migration based on the
use of the formal rule patterns describing transformations required for transferring
instances from the source ontology to a target one. The approach is implemented in our
software prototype that has been developed as a plug-in for the Project Navigator (PN)
Framework for carrying out instance migration between the versions of PSIa
ontologies1, 2. PSI project developed the methodology and toolset for assessing,
predicting, and optimizing the performance of engineering design systems in
microelectronics and integrated circuits (MIC)3. A multi-agent system (MAS) for holonic
simulation of an engineering design system in the domain of MIC design is developed as
a part of the PN Framework4. The MAS assists in analyzing and assessing the
performance of a design system as a tool for simulation experiments.

The article also reports on the evaluation of our methodology and the prototype
software tool for iterative semi-automated instance migration between the versions of
industrial ontologies with evolving schemas, between distributed ontologies of moderate
size with overlapping or partially matching schemas, and between ontologies of industrial
size in the same domain having different schemas. The evaluation experiments were set
up in line with these three use cases. The first experiment evaluates the quality of
instance migration between the versions of the PSI Suite of Ontologies. PSI ontologies
are used by cooperating software agents that simulate planning and execution of dynamic
engineering design processes4 in industrial MIC design domain. This use case is tailored
to support the evolution of the PSI Suite of Ontologies which assertional part is used as
the knowledge of a multi-agent system of cooperative software agents – in distributed
settings. The aim of the evaluation experiment based on the second use case is generating
reproducible migration quality measurements for the publicly available set of ontologies.
For that the benchmark set of ontologies of the Ontology Alignment Evaluation Initiative
– (OAEI) 2009 Campaignb has been used. The majority of these ontologies are artificially
built using the common parent ontology by injecting different sorts of changes. By that a
distributed collection of similar ontologies describing the same domain is modeled. The
objective of our third evaluation experiment was to measure the performance of our tool
for assessing its applicability to the industrially large volumes of instances. We have
chosen two industrial ontologies with overlapping schemas that are both based on the

a Performance Simulation Initiative (PSI) was an R&D project (2003-2009) of Cadence Design Systems GmbH.
b oaei.ontologymatching.org/2009/benchmarks/bench.zip/

 Instance Migration between Ontologies Having Structural Differences

3

GoodRelations5 ontologies as their common foundation. Both ontologies have rather
simple schemas – so the transformation complexity was low. However, the number of
assertions in the source ontology was big and they were available in modules. So adding
these modules to the migration process incrementally allowed us to measure the
execution times and to assess the computational performance of our software when
working with industrial size knowledge repositories.

The article is organized as follows. Section 2 presents our motivation for undertaking
this research. Section 3 provides a formal statement for ontology instance migration
problem and outlines the approach to the solution. Section 4 gives an overview of the
related work and outlines our contributions. Section 5 introduces our ontology instance
transformation framework based on atomic transformation patterns. It is explained how
instance transformation rules are designed and used for migrating ABox elements using a
walkthrough example of a Biblio ontology. Section 6 elaborates on the implementation
of our solution by presenting the algorithm and the software tool that have been
developed for ontology instance migration. The architecture and the functionality of the
components are explained. The use of the tool is illustrated by following the Biblio
example. Section 7 presents our evaluation experiments with three different sets of
ontologies. In Section 8 the results and the ways to solve problems that have been
investigated in our evaluation experiments are discussed, the conclusions are drawn, and
our plans for the future work are outlined.

2. Motivation

When ontologies evolve the structural changes are reflected in the ontology schemas. A
new schema version is developed by implementing these changes. As a rule structural
changes are carried out manually using various ontology engineering methodologies and
tools6, 7, 8. The next step of the development of the newer ontology version is transferring
the instances from the older set of ontology individuals (assertions) to the newer one.
Doing this manually proves to be very laborious. The required effort appreciably
increases with the number of transferable assertions. Furthermore it can be error prone.

In the PSI project we have developed the Suite of PSI Ontologiesc that serve as
domain models for Microelectronic and Integrated Circuit design. More than 20
subversions of the Suite have been developed iteratively in response to the refinements of
the requirements to these knowledge representations. The assertional part of the PSI Suite
incrementally received new ontology instances describing different engineering design
projects. Those instances came from different sources. The minor part of them has been
manually coded as test cases in the PSI and PRODUKTIV+d projects. Another substantial

c The on-line documentation may be retrieved from isrg.kit.znu.edu.ua/ontodocwiki/index.php/
PSI_Suite_of_Ontologies
d PRODUKTIV+ (secure.edacentrum.de/produktivplus/) is the accomplished R&D project funded by the
German Bundesministerium für Bildung und Forschung.

Maxim Davidovsky, Vadim Ermolayev, Vyacheslav Tolok

4

part of the assertions has been mined from the design project logs in the ACTIVEe
project. The set of assertions describing a moderately complex project in MIC design
may comprise dozens of thousands instances. Hence, performing a transition of the
knowledgebase to a newer version of the ontology has become a challenging problem
because of the required effort and the sensitivity to the possible transformation errors. A
tool for assisting a knowledge engineer in migrating the assertions from the older
ontology version to the newer one has therefore been demanded.

Very similarly, if distributed ontologies are populated based on the assertions taken
from the other ontologies in the same domainf, the patterns apply for transforming the
instances according to the structural differences. However, in this case manual
transformation is even more inappropriate than in the previous case of ontology
evolution. It often has to happen at run time and between the software entities that own
respective distributed knowledge representations. Luckily, different distributed variants
of the domain ontology may be regarded as different versions of the same ontology that
differ by the set of structural changes and their assertional parts. One of the experimental
cases in our research deals with the migration of instances between the GoodRelations-
compliant (see also www.heppnetz.de/projects/goodrelations/) industrial ontologies. This
case is of particular interest because: (i) the ontologies are the collections of assertions
describing real world industrial domain; and (ii) the ontologies are big enough to assess
the efficiency and performance of the prototype tool.

Our objective in the research reported in this article was to develop and evaluate the
prototype software tool for semi-automated instance migration from an older version to a
newer version of a set of ontology modules. As explained above, the tool may also be
used for merging distributed ontologies or exchanging assertions among these for mutual
enrichment or harmonization.

3. Problem Statement and Solution Outline

Let us assume, as suggested by description logics9, that an ontology O comprises its
schema S and the set of individuals I .

),(ISO (1)

Ontology schema is also referred to as a terminological component (TBox). It contains
the statements describing the concepts of O, the properties of those concepts, and the
axioms over the schema constituents. The set of individuals, also referred to as
assertional component (ABox), is the set of the ground statements about the individuals
and their attribution to the schema – i.e. where these individuals belong.

Let us consider two arbitrary ontologies),(sss ISO and),(ttt ISO that
conceptualize the semantics of the same universe of discourse U. U could be regarded as

e ACTIVE – Enabling the Knowledge Powered Enterprise (active-project.eu) is the accomplished EU FP7
Integrating Project.
f For example when cooperating software agents communicate their partial knowledge to their peers in a multi-
agent system.

 Instance Migration between Ontologies Having Structural Differences

5

a collection of ground facts: }{ fU . Essentially, sO and tO are the interpretations of U.
These ontologies would be considered identical if and only if:

)(int)(int ffUf
ts II , (2)

where)(int fI is the interpretation of the fact f by the individuals from I of ontology O.
Let us introduce an abstract metric of interpretational difference),,(ts OOUidiff . The

value of idiff will be equal to zero for identical ontologies and will increase
monotonically to one with the increase of the number of Uf such

that))(int)((int ff
ts II . Hence, 1idiff iff))(int)((int ffUf

ts II . This

metric (idiff1) is further interpreted as balanced F-measure in our evaluation

experiments presented in Section 7.
Ontologies sO and tO are structurally different if their schemas differ: ts SS . This

structural difference may be presented as a transformation ts SS : . If a finer grained
look at an ontology schema is taken, one may consider S comprising the following
interrelated constituents:

},,,,{ ADOC SSSSS (3)

where: CS is the set of statements describing concepts; OS is the set of statements
describing object properties; DS is the set of statements describing datatype properties;
and AS is the set of axioms specifying constraints over CS , OS , and DS . One may notice
that these constituents correspond to the types of the schema specification statements of
an ontology representation language L which is used for specifying sO and tO . The
transformation T may be sought in the form of nested transformation rules over the
constituents of sS resulting in the corresponding constituents of tS .

Let us assume now that, given two structurally different ontologies sO and tO , the
ABox sO contains individuals: sI , while the ABox of tO is empty: tI .
Therefore sO and tO are not identical (Eq. 2). The problem of minimizing

),,(ts OOUidiff by: (i) taking the individuals from sI ; (ii) transforming them
correspondingly to the structural difference between sO and tO using T; and (iii) adding
them to tI – is denoted as ontology instance migration problem.

Ontology instance migration problem can theoretically be solved in one-shot. In
practice however, each of the sub-tasks (ii-iii) may result in the loss of assertions because
of the problems discussed in Section 8. Therefore an iterative refinement of the solution
could yield results with lower idiff value. Such a solution is presented in this article. In
fact, an iterative solution of ontology instance migration problem develops a sequence of

sO states ist
sO in a way to minimize the),,(ts OOUidiff such that:

jiOOUidiffOOUidiff t
st
st

st
s

ji),,(),,((4)

where: ist
sO is sO in the state after accomplishing iteration i; i, j are iteration numbers.

In our approach the process of ontology instance migration (Fig. 1) starts with the
analysis of the changes in the TBoxes of the ontology versions. This analysis is done by a
human knowledge engineer with the help of the Ontology Difference Visualizer (ODV)
tool10. As a result the rules for transforming the instances based on the patterns for the
discovered structural changes are written down by the ontology engineer. The activity of

Maxim Davidovsky, Vadim Ermolayev, Vyacheslav Tolok

6

specifying the rules is supported by the transformation rules editor that is the part of the
Ontology Instance Migration (OIM) tool presented in Section 6. These rules are coded in
an XML-based (www.w3.org/XML/) language and further used for guiding the
automated transfer of the instances from sI to tI . The subsequent activity of automated
ontology instance migration is performed by the OIM engine without human intervention.
Instance migration results in the transfer of all the assertions that do not require the
resolution of the problem cases by the ontology engineer. The cases that caused problems
are recorded in the migration log. Migration log is the input information for the
subsequent activity of the problem cases analysis. At this step the ontology engineer may
decide that the transformation rules need to be refined in order to ensure the automated
transfer in the detected problem cases in the next iteration. Otherwise the ontology
engineer may decide that the remaining instances are not required in the target ABox or
may be migrated manually. If so the manual transfer of the required assertions is done
using an ontology editor.

4. Related Work

The predecessor work to the research presented in this article has been done by
Vladimirov et al.12. Current research and development further extend and refine these
results. As opposed to our current approach13, the predecessor work12 is based on the use
of an ontology instance migration scenario driving the migration process and encoded as
a Python script. A more comprehensive survey of alternative approaches to ontology
instance migration is given in our technical report14. A good survey of the related work
has been done by Serafini and Tamilin15. In addition to their overview, more frameworks
for ontology evolution and ontology versioning need to be mentioned – for example the
results published by Maedche et al.16, Klein et al.17, the Karlsruhe Ontology and the
Semantic Web tool suite (kaon.semanticweb.org) as they provide some extra bits of the
required functionality for ontology instance migration.

Instance
Migration

Tool

Ontology
Engineer

Onto.Diff.

Visualization
Tool

Ontology
Editor

r c r

Source
Ontology

TBox (OWL)

m rm rr m r

Target
Ontology

TBox (OWL)

Structural
Difference

(UML)

Instance
Transforma-
tion Rules

Source
Ontology

ABox (OWL)

Target
Ontology

ABox (OWL)

Instance
Migration

Log

Source
Ontology

ABox (OWL)

Target
Ontology

ABox (OWL)

r

Specify
Transformation Rules Detect

TBox Changes Migrate
Instances Analyze

Problem Cases Manually Migrate
Problem Cases

+

c

Legend: r – read; c – create; m – modify; + – optional

Fig. 1 Instance Migration Process specified in ISO/IEC 24744 notation for describing methodologies11.

 Instance Migration between Ontologies Having Structural Differences

7

Ontology instance migration for evolving ontologies is the problem of ontology
version management. As such it has not been fully researched so far. To the best of our
knowledge, the literature reporting the results in this sub-field of ontology management is
limited. However, looking at a broader knowledge and data change and transformation
research landscape is helpful. For instance it is useful taking a look at ontology
translation and database transformation research18, 19, 20. Ontology translation approaches
can be classified as: ontology extension generation; datasets translation and querying
through different ontologies. Dataset translation is of particular relevance to our work.

Making use of several heterogeneous distributed knowledge representations that
describe the same or partially overlapping domains is traditionally regarded as the
problem of ontology matching and alignment. This subfield of knowledge management is
being extensively researched. One good review of the state of the art in this field is by
Euzenat and Shvaiko21. Several software prototypes attempt solving ontology matching
and alignment problem in a fully automated way. A popular instrument for the
comparative evaluation of their results is Ontology Alignment Evaluation Initiative
(OAEI). The most recent results of this benchmarking competition are dated 201022. We
make our results comparable to the results of the participants of this competition held in
200923 by using the same set of benchmark ontologies. In fact our tool does the alignment
of ontological interpretations (as specified in Section 3) with better recall, precision, and
F-measure than any of those tools. Indeed, the maximal recall, precision, and F-measure
results of the tools that were evaluated in the web directories test case23 of OAEI 2009 are
respectively 060, 0.65, 0.63. In our evaluation experiments the results reach the level of
approximately 0.83-0.9 for these metrics. The main reason is the use of human assistance
in the iterations for refining and adjusting the transformation rulesg. Though our approach
requires some human effort and eventually takes longer than any of the fully automated
one-shot solutions, it produces results of a substantially better quality. Because of that
and despite the extra overhead of involving humans, our approach may be considered
acceptable in industrial settings, for example in the management of industrial knowledge.

To conclude we have to state that fully automated ontology instance migration is the
problem that remains an unsolved challenge to date. In particular, we are not informed
about a tool that is capable to solve the problem reliably and with acceptable quality
without human intervention. The analysis of the available literature on the tool support
reveals that ontology instance migration is often carried out manually, using a tool for
defining the differences between the TBoxes of the source and the target ontologies (e.g.
PromptDiff24).

Finally, the evaluation of the quality of the results of instance migration and, hence,
of the efficiency of the used methods is essential. For quality measurements in our
evaluation experiments we have adapted the metrics used in data migration25 and schema
matching26. These metrics originate from the information retrieval27 domain.

g This can not be regarded as a direct comparison to the similar solutions for ontology instance migration
problem, but only as an indication of the quality of our solution. Unfortunately, at the time of writing this
article we did not find the publications of the experimental results of the solutions that are similar to ours.

Maxim Davidovsky, Vadim Ermolayev, Vyacheslav Tolok

8

5. Instance Transformation Patterns and Rules

For correctly and completely migrating instances between a source and target ontology
the transformation process has to be explicitly and formally specified. The specification
implies an (implicit) declaration of the set of transferable individuals that is achieved by
the explicit selection of the set of concepts and properties which instances have to be
migrated. Also it is necessary to specify the set of required transformations over the
migrating individuals. Having done that, we obtain the set of transformation rules for
instance migration.

In the case of evolving ontologies the process of the creation of a new ontology
version starts with applying changes to the TBox. Thus by comparing the TBoxes of
respective ontology versions we can identify a certain set of structural changes
conditioning differences between the versions. In the case of ontologies having
overlapping domains we first have to determine the correspondences between the entities
forming the schemas of these ontologies. Then, using the obtained mappings, we can
similarly determine the structural changes between the ontologies.

Considering all possible kinds of changes in such a way, the set of change patterns
that underlie the kinds of differences between the sets of individuals sI and tI can be
defined – in particular such types of changes as the presence or absence of some datatype
property, the occurrence of a new object property or the removal of any old object
property, etc. Furthermore, based on the set of such change specifications it is possible to
define the set of typical atomic transformation operation patterns over the individuals
liable to migration.

Following the discussion of Eq. 3, structural transformations are defined as the
mappings of ontology schema constituents:

A
t

A
s

A

D
t

D
s

D

O
t

O
s

O

C
t

C
s

C

SST

SST

SST

SST

:

,:

,:

,:

 (5)

specified as the sets of rules, for example: }{ CC tT . It needs to be mentioned that these
rules may have a nested structure. Concept transformations may nest the rules from OT ,

DT , or AT ; property transformations may nest the rules from AT . The reason for having
this structure is that a transformation of a particular type of a schema constituent may
also require the related transformations of its structural context represented by the related
structure constituents of other types. In particular, a concept definition transformation
may involve the changes in its object or datatype properties, or the constraints over its
subsumption relationships. One particularly relevant example is building a transformation
that specifies the change of a concept caused by the addition (or change) of an
equivalence or disjointness axiom. Such a transformation in our approach is specified by
nesting the corresponding At in the Ct .

The transformation rules for the individuals have to be derived from the structural
transformations },,,{ ADOC TTTTT and applied to the set of assertions:

 Instance Migration between Ontologies Having Structural Differences

9

A
t

A
s

A

D
t

D
s

D

O
t

O
s

O

C
t

C
s

C

IITr

IITr

IITr

IITr

:

,:

,:

,:

 (6)

Tr-s as the derivatives of T-s will have the same nested structure.
Hence, complex transformation rules may be assembled using atomic transformation

specifications that represent indivisible transformation operations. Not all atomic
operations that can be thought of make sense for ontology instance migration. For
example, an atomic operation of concept deletion is irrelevant because no individuals
belonging to the deleted concept will be migrated. We have defined instance
transformation patterns for those atomic operations that make sense. A transformation
pattern is therefore denoted as a mapping LLTp : where L is the ontology
representation language (see also Section 3). Similarly to transformation rules,
transformation patterns belong to different categories that apply to different kinds of
statements in L:
 LLtpTp CC :}{ are the patterns for concept instance transformations
 LLtpTp OO :}{ are the patterns for object property instance transformations
 LLtpTp DD :}{ are the patterns for datatype property instance transformations
 LLtpTp AA :}{ are the patterns for the specification of the individual

constraints (axioms)
The summary of the atomic transformation patterns is given in Table 1.

Table 1. Basic instance transformation patterns supported by the OIM tool

Pattern No Type

Comment

Prob-
lems

1 Concept transformations

1.2 addition <concept concept_name="name"> … </concept> -

 Nothing happens to instances
<concept concept_name="oldname">
 <rename>newname</rename> … </concept> 1.3 renaming

All the instances of the oldname become the instances of the newname
-

2 Object property transformations
<concept concept_name="name1">
 <removeRelation domain="name1" range="name2">
 propertyName</removeRelation> … </concept>

2.1 deletion

All instances of the propertyName having domain name1 (if specified)
and range name2 (if specified) are discarded

-

<concept concept_name="name1">
 <addRelation domain="name1" range="name2">
 relationName</removeRelation> … </concept>

2.2 addition

Nothing happens to instances
+

<concept concept_name="name1">
 <rename>
 newName</rename> … </concept>

2.3 renaming

All the instances of the oldname become the instances of the newname
-

2.4 cardinality
<concept concept_name="name1">
 <changeCardinality onProperty="propertyName"> +

Maxim Davidovsky, Vadim Ermolayev, Vyacheslav Tolok

10

Pattern No Type

Comment

Prob-
lems

 value</changeCardinality> … </concept> change

Some instances of the oldname become the instances of the newname
<changeRange … ofProperty="propertyName" … >name
</changeRange> 2.5 range

change Nothing happens to instances
+

3 Datatype property transformations
<removeProperty> propertyName </removeProperty>

3.1 deletion
All instances of the oldname are discarded

-

<addProperty … datatype="datatype value" … value="property
value" … toIndividual="individual name" …> property name
</addProperty>

3.2 addition

Nothing happens to instances
-

<renameProperty … oldname="name1" …
>newname</renameProperty> 3.3 renaming

All the instances of the oldname become the instances of the newname
-

<changeDatatype … ofProperty="propertyName" … >datatype
</changeDatatype> 3.4 type change

All the instances of the oldname are transformed to the instances of the
newname having a different data type

-

A reader may argue that Table 1 does not present the patterns for axiom
transformations. Those have not been included because they do not effect in
transformations, but are used for applying additional conditions on the set of individuals
that is migrated. A basic pattern for specifying these conditions is the pair
<condition> …</condition> which nests the tags for specifying conditions. For
example, a condition could be a specification of a particular value of the datatype or
object property (<relation> or <property> tags). Property names are specified
within the tag while the value attribute allows specifying the specific value of the
property or a range. A range is specified using the reserved words %any
individual% or %same individual%. Constraint axioms may be specified in a
similar way using the basic pattern <constraint> … </constraint>. Some
examples are given further in the article in the discussion of the second iteration of our
Biblio example – please refer for instance to Fig. 10.

A reader may also argue that the set of patterns in Table 1 is not complete. Our
counter-argument is that the other possibly useful patterns either do not affect individuals
or may be described by a nested combination of the atomic patterns listed in the table.
For example, it may be noted that the operations for moving a concept to another package
(ontology module) have to be also introduced. However, referencing of some concept to
another package does not entail the changes in individuals. Similarly, the fact of
referencing some concept as a subclass of another class also does not directly imply the
changes in individuals. Probable incurred changes (e.g. inheritance of additional
properties) can be described by a combination of the atomic transformation patterns.

Instance transformation rule patterns are of two kinds. The first kind is for the
declaration of the set of classes which instances are liable to migration. The second
represents typical transformation operations.

 Instance Migration between Ontologies Having Structural Differences

11

Transformation patterns are defined using XMLSchema (www.w3.org/
XML/Schema). The use of the patterns enables decoupling from particular ontology
contexts and can be instantiated in a set of the specific transformation operations for the
particular pair of ontologies. In our approach transformation rules are serialized in XML.
This design choice allows building convenient and yet computationally efficient formal
descriptions for the transformations.

The transformation rules are specified for the concrete pair of ontologies by applying
the described patterns as the templates. It is done by combining appropriate
transformation patterns and filling in the slots with concrete values. Those rules are
further applied for performing required migration operations on the instances of the
source ontology. As a result the target ontology ABox is obtained. For illustrating this
approach we use a very simple and artificial example of a fragment of a Biblio
ontology (Fig. 2).

 a) TBox of Biblio v.1 b) TBox of Biblio v.2

c) ABox of Biblio v.1

Fig. 2 The fragments of a Biblio ontology in versions 1 and 2.

Maxim Davidovsky, Vadim Ermolayev, Vyacheslav Tolok

12

The structural difference between Biblio_v.1.owl and Biblio_v.2.owl as
discovered using the ODV tool (Fig. 3) is interpreted as summarized in Table 2. The
transformation rules for those structural change elements have been coded based on the
templates provided by the transformation patterns (Table 1) as shown in Fig. 4.

At the step of formulating the transformation rules for a particular migration case the
names of the particular concepts and properties, and the set of transformation operations

<concepts
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="TRules-Biblio-v11-v22.xsd">
 <concept concept_name="ProceedingPaper">
 <addProperty data_type="string" value=""
 toIndividual="">pageRange</addProperty>
 <renameRelation domain="ProceedingPaper" range="Proceeding"
 oldName="PrP-isPartOf-Pro">PrP-isPartOf-Vol</renameRelation>
 <changeRange ofProperty="PrP-isPartOf-Vol">Volume</changeRange>
 <removeRelation domain="ProceedingPaper" range="PageNo">
 PrP-placedIn-PaN</removeRelation>
 </concept>
 <concept concept_name="Proceeding">
 <rename>Volume</rename>
 <renameRelation domain="Volume" range="ProceedingPaper"
 oldName="Pro-contains-PrP">Vol-contains-PrP</renameRelation>
 </concept>
</concepts>

Fig. 4 Instance transformation rules for the first iteration of the Biblio example.

Fig. 3 The structural difference diagram of the versions of the Biblio ontology (Fig. 2) generated by the ODV
tool.

 Instance Migration between Ontologies Having Structural Differences

13

that should be executed over their individuals are specified in the corresponding XML
file. A root statement <concepts> in the XML Schema file is defined for that. This
root element contains the descriptions of the concepts and operations for the particular
pair of ontologies. It is formalized as a set of <concept> statements with respective
properties that contain as their values the names of classes which instances are liable to
migration. The tag <concept> contains the embedded tags that correspond to
operations which may also have attributes. For example the addProperty tag has the
data_type attribute for the added property and value attribute that contains the value
of the property. The rules can be specified for transforming the properties of particular
individuals using the toIndividual attribute specifying the name of the individual.

For our Biblio example the application of the transformation rules specified in
Fig. 4 results in the ABox migration as pictured in Fig. 5. A brief analysis of these results
reveals that the majority of instances of Biblio_v.1 have been lost. Hence,
straightforwardly following the detected differences between the TBoxes does not ensure
the maximal possible completeness of the transfers at the ABox level. Indeed, all the
author-related information has been lost because we discarded the concept of a Person
instead of more accurately taking care of its instances. The instances of a Person could
in fact have been separable by the difference in their relationship to the concept of a
ProceedingPaper. So, they could have been migrated to the appropriate newly
introduced concepts of an Author or a PCMember. More generally speaking,
combining discarding former concepts or properties with introducing new ones in
transformation rule sets most evidently leads to the losses in instances. As it will be
shown further in the article, the best way for preserving the required instances is using
change patterns like <rename …> or <changeRange …>. The rules based on
<cardinalityChange …> may also cause losses in migration that may be resolved
using heuristics or additional rules for individual instances – as explained further in more
detail.

a) Source instances (Biblio_v.1) b) Target instances (Biblio_v.2)
Legend: – successfully transformed and migrated; - lost.

Fig. 5 The results of instance migration for the Biblio example in iteration 1.

Maxim Davidovsky, Vadim Ermolayev, Vyacheslav Tolok

14

Table 2. Summary of changes related to the transformation patterns

Transformation Pattern Structural Change

--- Concepts Person and PageNo are discardedh together with all their object
properties

--- Concepts Author and PCMember are introducedi

<rename …> Concept Proceeding is renamed to Volume

<renameRelation …>,
<changeRange …>

Object property isPartOf – contains is modified by relating the
renamed concept (Volume) to a ProceedingPaper

--- The cardinality of the object property ProceedingPaper –
authoredBy–Author is changed to 1..M

<removeRelation …> Object property placedIn – of a ProceedingPaper is discarded

<addProperty …> Datatype property pageRange is introduced for a ProceedingPaper

The objectives we had when developing the methodology for instance migration and
the supporting OIM tool were: (i) to provide an ontology engineer with maximal possible
advise on instance losses; and (ii) to support his productive work in the iterations of the
transformation rule refinement process. The details of the implementation of the OIM
tool are presented in the next Section.

6. The Algorithm and Tool for Ontology Instance Migration

The algorithm for solving the ontology instance migration problem, as denoted in
Section 3, has been developed (further referred to as the OIM algorithm). The
component-level outline of the OIM algorithm is presented in Fig. 6. Essentially the OIM
algorithm determines the functionality of the Instance Migration Engine presented further
in this Section as a part of the OIM plug-in architecture (see also Fig. 8). The software
components involved in the execution of the instance migration from sO to tO are
pictured in more detail in Fig. 7. These components are also rendered bold in Fig. 6. The
specification of the OIM algorithm uses the following symbols:
 ss oO – the set of source ontology modules (possibly coupled using import

statements)
 tt oO – the set of target ontology modules (possibly coupled using import

statements)

 CC
i sS – the set of statements describing concepts (classes) of a source ontology

module io (where int
sOni ,1 ,

sOn – the number of source ontology modules in

sO)

 OO
i sS , DD

i sS – the set of statements describing object and datatype

properties in io respectively

h We do not offer a transformation pattern for discarding classes or properties as nothing has to be done with the
instances of these structural elements. These instances are not taken into account in the migration process.
i The rules for adding concepts and cardinality change are not introduced (c.f. Fig. 4) – we have no instances for
these transformed structural elements.

 Instance Migration between Ontologies Having Structural Differences

15

For (Rr :) do
 //* Process the next transformation rule
 {TRProcessor: Get r from R ;
 TRProcessor: Get the value of the concept_name slot of r ;
 //* find a class with the concept_name

 For (Ooi :) do

 //* Process i-th ontology module

 {For (C
i

C Ss :) do

 //* Process the next concept and related properties

 {OntologyManager: Get Cs from C
iS where nameconceptnamesC _. ;

 DataFactory: Get CsI according to the chosen ABScope;

 OntologyManager: Infer the sets of axioms iA
sS

~
 and kA

tS
~

 that either

 constrain or expand CsI :

 ktis oo and

 kD
ti

D
sk

O
ti

O
sk

C
ti

C
sik

A
tk

A
ti

A
si

A
s SSSSSSTSSSS ::

~
,

~
,

 int
tOnk ,1 ,

tOn – number of target ontologies;

 Core: Query Reasoner to infer the constrained or expanded set

 of individuals Cs
I
~

based on iA
sS

~
 and kA

tS
~

;

 LogFactory: Write the results of the query to the Log for information;

 DataFactory: Retrieve CsI
~

;

 For (
jrOpop :)

 //* Execute the next atomic transformation operation
 {Get op ;
 Core: Generate the axioms for applying the structural
 transformations incurred by op ;
 Core: Query Reasoner to check the perspective status of the
 ontology (integrity; OWL-DL; OWL-Full) after the transformations
 are applied;
 LogFactory: Write the results to the Log;
 Core: Query Reasoner for possible additional structural

 transformations according to iA
sS

~
 и kA

tS
~

;

 Core: Query Reasoner to check the perspective status of the
 ontology;
 LogFactory: Write the results to the Log;
 OntologyManager: apply structural transformations;

 For (ind : CsI
~

)

 //* Execute the atomic transformation operation over
 the next individual

 {Retrieve ind ;

 Core: Generate TransformationAxioms that implement op over ind ;
 OntologyManager: Apply TransformationAxioms;
 }
 }
 LogFactory: Write the results to the Log;
 }
 }
 LogFactory: Write the results to the Log;
 }
 }

Fig. 6 The component-level outline of the OIM algorithm.

Maxim Davidovsky, Vadim Ermolayev, Vyacheslav Tolok

16

 AA
i sS – the set of constraint axioms in io

 iI ={ ind } – the set of individuals of ontology io

 ABScope – the parameter that circumscribes the part of the source ABox in terms of
ontology modules involved in the migration process – may be set manually

 }{},{},{},{,,, ADOCADOC tttttTTTTT is the set of structural

transformation rules specified for a particular migration case
 opOp

jr – the set of atomic transformation operations of which the

corresponding transformation rule is composed (where int Tnj ,1 , Tn – the

number of transformation rules). Each operation is an instantiation of a respective
transformation pattern (Tp)

The computational complexity of the OIM algorithm (Fig. 6) could be estimated as
linear ()(sIO) in the assumption that the number of TBox elements is substantially
smaller than the number of ontology assertions. This assumption is valid for many
ontologies. In particular, it is true for all the ontologies that have been used in our
evaluation experiments (Section 7). This estimation is also confirmed by the results of
our third evaluation experiment (Table 10).

The OIM tool is implemented as a Java (www.oracle.com/technetwork/java/) plug-in
for the PN framework. The architecture of the OIM plug-in is sketched in Fig. 8. It has
been developed using the IntelliJIDEA Integrated Development Environment v.8.1
(www.jetbrains.com/idea/). Java Application Programming Interface (API) for XML
Processing (JAXP, jaxp.java.net) has been used for creating and processing virtual XML
documents, in particular parsing tags and attributes in the transformation patterns and

Fig. 7 The components of the Instance Migration Engine. The dashed arrow lines represent the flows of
information.

 Instance Migration between Ontologies Having Structural Differences

17

rules. The OWL API v.2.2.0 (owlapi.sourceforge.net) has been used for processing
ontology files (modules) regarding ontology modules as consistent sets of axioms and
assertions. At the higher level of the representation of ontology elements the
OWL2JAVA API (developed as a part of the PN framework) has been used for making
the processing of the concept and instance representations better structured and more
convenient in coding. Using OWL2JAVA allowed us natively assessing ontology
elements as Java classes, attributes, and methods instead of working with lower-level
statements or triples. Consequently, the use of this intermediate level data access factory
facilitated to better decoupling from particular OWL serializations.

The Graphical User Interface (GUI) of the OIM tool has been developed according to
the look and feel of the PN framework. The forms and the desktop layouts have been
developed using JGoodies API (www.jgoodies.com). In addition the Swing
(download.oracle.com/javase/1.5.0/docs/guide/swing/) and AWT (download.oracle.com/
javase/1.5.0/docs/guide/awt/) Java libraries have been used. The Dashboard and the
Transformation Rule Editor user interface of the OIM tool are pictured in Fig. 8.

We now illustrate how the OIM tool can be efficiently used for ensuring quality and
completeness of instance transformations by describing the use of the tool in the second
iteration of the instance migration process for our Biblio example. The first step an
ontology engineer has to undertake after doing automated migration of ontology
instances is the analysis of the problems encountered in this migration (c.f. the
methodology, Fig. 1). This activity is supported by the OIM Migration Log Viewer

Tasks

Specify/Refine Transformation Rules

Migrate Instances

 Analyze Problem Cases

Legend: – flow of data; – flow of control and data;

 – back-end component; – front-end component

ProjectNavigator Prototype
Software Framework

OIM plug-in ODV plugin . . .

Instance Migration Engine

Transformation Rule Editor

Migration Log Viewer

OIM Dashboard

GUI Layer

Application Logics Layer

Data Factory Layer

API Layer

JGoodies API

OIM Data Factory

Swing Lib AWT Lib

JAXP API OWL API OWL2JAVA API

Triple Store

OIM Project
Repository

Instance
Migration
Log File

Ontology
TBox

Pellet Reasoner

Fig. 8 The architecture of the OIM plug-in. The component structure of the Instance Migration Engine is
detailed in Fig. 7.

Maxim Davidovsky, Vadim Ermolayev, Vyacheslav Tolok

18

functionality. The viewer displays the records about the problems encountered at the
migration execution time in the order of their appearance. This order is also a useful piece
of information because it allows assessing how the combination of the basic operations in
the given sequence led to the migration problems. The problems encountered at
iteration 1 for our Biblio example are listed in Table 3 in the same order the
corresponding records had appeared in the migration log.

Table 3. The analysis of ABox changes after the first iteration based on the Migration Log

Individuals

Ver. Name
Migration Problems Lost Information

added an empty slot of property <pageRange> value of <pageRange>

object property <PrP-authoredBy-Per> is

deleted

object property

<PrP-authoredBy-Aut>

v.1

v.2

PrP1:ProceedingPaper

PrP1:ProceedingPaper

object property <PrP-reviewedBy-Per> is

deleted

object property

<PrP-reviewedBy-PCM>

v.1

v.2

PrP2:ProceedingPaper

PrP2:ProceedingPaper

Same to PrP1: ProceedingPaper

v.1

v.2

PaN1:PageNo

Datatype property values lost when the instances

of PageNo were discarded

value of <pageRange> property:

“179-190”

v.1

v.2

PaN2:PageNo

Same to PaN1: PageNo value of <pageRange> property:

“209-216”

Fig. 9 OIM tool Dashboard and Transformation Rule Editor (Biblio example, iteration 2).

 Instance Migration between Ontologies Having Structural Differences

19

Individuals

Ver. Name
Migration Problems Lost Information

v.1

v.2

Per1:Person

The instance of a Person that was related to the

instance of a ProceedingPaper as the

reviewer was erroneously discarded

Per1:PCMember

v.1

v.2

Per2:Person

The instance of a Person that was related to the

instance of a ProceedingPaper as the author

was erroneously discarded

Per2:Author

v.1

v.2

Per3:Person

The instance of a Person that was related to the

instance of a ProceedingPaper as the author

was erroneously discarded

Per3:Author

v.1

v.2

Per4:Person

Same to Per2: Person Per4:Author

v.1

v.2

Per4:Person

Same to Per1: Person Per4:PCMember

The result of the analysis of the encountered problems supports our suggestions about
the use of the transformation patterns given at the end of Section 5. Indeed the losses of
the concept and property instances were caused by a straightforward way of following the
discovered structural difference between the TBoxes of Biblio_v.1 and
Biblio_v.2 provided by the ODV tool (Fig. 3). Following these suggestions we
discarded the concepts and the properties attached to these concepts with relevant
instances. We then added new concepts and properties. Hence, the instances listed in the
last right column of Table 3 have been lost.

The task of a knowledge engineer at this step is to decide if the lost instances are still
required in the target ABox and, if so, to refine the transformation rules in order to
migrate these instances at the next run of the Instance Migration Engine. In the Biblio
example the knowledge engineer decided to do the refinements pictured in Fig. 10.
These changes have been done in line with our recommendations about combining basic
transformation patterns. Instead of discarding the instances of a Person the refined rules
make a separation of these instances by their object properties. Those which care the …
authorOf … property are migrated to the newly introduced concept of an Author.
Those related to an instance of a ProceedingPaper as … reviewerOf … become
the instances of a PCMember.

In addition, the example set of the refined rules demonstrates how default property
values may be assigned to the new properties in the target ABox. For example, the value
"PhD stud., Dept1, Uni1" is assigned to the newly introduced affiliation
property of the Per_3 instance of an Author. Default properties may also be assigned
to a group of instances. For that the conditions for determining the needed set of instances
by using the <condition …> pattern have to be specified. In the case of adding of a
default value to all the instances of some concept it is specified in the value slot. The
conditions and the identification of a particular instance are left blank.

OIM Transformation Rule Editor (Fig. 9) is used to support the specification or
refinement of the transformation rules. It provides a template based interface that
supports all the transformation patterns listed in Table 1. The rules are specified by filling

Maxim Davidovsky, Vadim Ermolayev, Vyacheslav Tolok

20

the slots of the transformation patterns with the required specific names or values of the
concepts or properties. It came out of our experience in the evaluation trials that the
template approach facilitates to substantially decreasing the effort spent in this step and
lowering the chances of making mistakes.

The results of the subsequent Instance Migration Engine execution in the second
iteration for the Biblio example are pictured in Fig 11. The figure shows that all the
instances of Biblio_v.1 have been correctly transformed and migrated to
Biblio_v.2 using different combinations of the transformation patterns in a proper
sequence. Besides that, the default instances for the newly introduced properties have
been assigned.

<concepts
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="TransformationRules-Biblio-v11-v22.xsd">
 <concept concept_name="ProceedingPaper">
 <addProperty data_type="string" value="" toIndividual="">pageRange
 <condition>
 <valueFrom domain="PageNo" property="pageRange">%sup condition%</valueFrom>
 <supplementaryCondition type="relation" name="PaN-placedIn-PrP"
 range="ProceedingPaper">%current individual%</supplementaryCondition>
 </condition>
 </addProperty>
 <renameRelation domain="ProceedingPaper" range="Person"
 oldName="PrP-authoredBy-Per">PrP-authoredBy-Aut</renameRelation>
 <changeRange ofProperty="PrP-authoredBy-Aut">Author</changeRange>
 <changeCardinality onProperty="PrP-authoredBy-Aut">1..M</changeCardinality>
 <renameRelation domain="ProceedingPaper" range="Person">PrP-reviewedBy-PCM
 </renameRelation>
 <changeRange ofProperty="PrP-reviewedBy-PCM">PCMember</changeRange>
 </concept>
 <concept concept_name="Person">
 <rename>Author</rename>
 <condition>
 <relation range="ProceedingPaper" rangeIndividual="%any individual%">
 Per-authorOf-PrP</relation>
 </condition>
 <removeRelation domain="Person" range="ProceedingPaper">Per-reviewerOf-PrP
 </removeRelation>
 <addProperty data_type="string" value="" toIndividual="">affiliation
 </addProperty>
 <addProperty data_type="string" value="PhD stud., Dept1, Uni1"
 toIndividual="Per_3">affiliation</addProperty>
 <renameRelation domain="Person" range="ProceedingPaper"
 oldName="Per-authorOf-PrP">Aut-authorOf-PrP</renameRelation>
 </concept>
 <concept concept_name="Person">
 <rename>PCMember</rename>
 <condition>
 <relation range="ProceedingPaper" rangeIndividual="%any individual%">
 Per-reviewerOf-PrP</relation>
 </condition>
 <removeRelation domain="Person" range="ProceedingPaper">Per-authorOf-PrP
 </removeRelation>
 <removeProperty>name</removeProperty>
 <addProperty data_type="int" value="">id</addProperty>
 <addProperty data_type="string" value="">expertIn</addProperty>
 <renameRelation domain="Person" range="ProceedingPaper"
 oldName="Per-reviewerOf-PrP">PCM-reviewerOf-PrP</renameRelation>
 </concept>
</concepts>

Fig. 10 Instance transformation rules for the second iteration of the Biblio example.

 Instance Migration between Ontologies Having Structural Differences

21

7. Evaluation

The methodology for ontology instance migration and the implemented OIM tool
prototype have been evaluated with respect to the quality and completeness of the
executed instance migration. We also evaluated the computational performance of the
Instance Migration Engine in order to get an indication about the applicability of our
approach to industrially realistic quantities of assertions. Schematically the experimental
set-up is represented in Fig. 12.

Three evaluation experiments with different ontologies have been performed. In our
first experiment the excerpt of the PSI Suite of Ontologies v.2.0 and v.2.2 has been used.
The objective of this experiment was to reveal possible errors at migration run time and
prove the concept. The objective of the second experiment was to obtain the quality
measures that can be compared to the results of the automated ontology alignment
software. Therefore a broader set of publicly available test case ontologies has been used.

Instance
Migration

Tool

Ontology
Engineer

r c r

Source
Ontology

TBox (OWL)

rrmr m
r

Target
Ontology

TBox (OWL)

Structural
Difference

(UML)

Instance
Transforma-
tion Rules

Source
Ontology

ABox (OWL)

Target
Ontology

ABox (OWL)

Instance
Migration

Log

Existing
Target Ontology

ABox (OWL)

Generated
Target Ontology

ABox (OWL)

r r

Specify
Transformation Rules Detect

TBox Changes Migrate
Instances Analyze

Problem Cases Analyze migration quality
and completeness

c

Fig. 12 The set-up of the evaluation experiments

a) Source instances (Biblio_v.1) b) Target instances (Biblio_v.2)
Legend: – successfully transformed and migrated.

Fig. 11 The results of instance migration for the Biblio example in iteration 2.

Maxim Davidovsky, Vadim Ermolayev, Vyacheslav Tolok

22

The bigger quantity of used ontologies allowed receiving statistically more precise
evaluation measurements using the metrics described below. In the experiments 1 and 2
the results of the migration have been compared to the available target ABoxes. The
quality and completeness of instance migration were measured. In the third trial we have
experimented with the ontologies that have been developed and are in use in real
industrial settings.

For measuring the quality and the completeness of ontology instance migration
Precision and Recall metrics have been adopted from the Information Retrieval domain27
and further adapted to fit the context of our problem. In our case Precision (P) is the
fraction of migrated individuals that are relevant. Recall(R) is the fraction of relevant
individuals that are migrated. The contingencies are explained in Table 4 where P and R
are computed as:)/(fptptpP ;)/(fntptpR . The effectiveness of the migration
tool can also be measured using the Accuracy metric. In our case Accuracy (A) is defined
as)/()(tnfnfptptntpA . An ideal migration outcome is when
Precision=Recall=1. However, neither Precision nor Recall separately provides a
complete picture of the correctness of the obtained results. For that the F-measure could
be of interest as it brings Precision into correlation with Recall as a weighted harmonic
mean of the both:))/()1(())/1)(1()/1(/(1 22 RPPRRRF , where

 /)1(2 ,]1,0[. If both precision and recall are of equal importance they can
be equally weighted in F by having 2/1 or 1 . This case is the one of a balanced
F-measure)/(21 RPPRF

.

Table 4. Instance migration contingency table

 Relevant Nonrelevant

Migrated true positives (tp) false positives (fp)
Not migrated false negatives (fn) true negatives (tn)

In the first evaluation experiment with the excerpt of the PSI Suite of Ontologies the

total number of instances was 1890 structured in 12 ontology modules. The instances
have been migrated in one shot. The contingencies for the first experiment are given in
Table 5 and the results are summarized in Table 6.

Table 5. The contingency table for the excerpt of the PSI Suite of Ontologies

 Relevant Nonrelevant
Migrated 360 2

Not migrated 48 1480

Table 6. The summary of the results for the excerpt of the PSI Suite of Ontologies

 Measures

Iteration Precision Recall Accuracy
Balanced

F-measure
1 0.994475138 0.881632653 0.973373303 0.93466032

 Instance Migration between Ontologies Having Structural Differences

23

The source for the second experiment was the set of the test ontologies of the OAEI
2009. The choice was motivated by the public accessibility of the test set that allows
cross-evaluation. 40 ontologies have been chosen which in our opinion were the most
appropriable for the instance migration evaluation. The total number of instances was
2060. The instance migration process has been done in two iterations with a slight
refinement of the transformation rules in the second iteration. The contingencies for the
second experiment are given in Table 7 and the results are summarized in Table 8.

Table 7. The contingency table for the OAEI 2009 set of ontologies

 Relevant Nonrelevant
Migrated 1475 7

Not migrated 309 269

Table 8. The summary of the results for the OAEI 2009 set of ontologies

 Measures

Iteration Precision Recall Accuracy
Balanced

F-measure
1 0.99527665 0.82679372 0.84660194 0.90324556
2 0.99732381 0.98415493 0.98162729 0.99069561

The results given in Table 8 indicate that opting to an iterative approach in our

methodology was correct in terms of further increasing the quality of instance migration.
Indeed, the refinement of the transformation rules in the second iteration allowed
increasing the recall and accuracy of our results substantially. Consequently the balanced
F-measure has been improved by almost 10 percent.

In the third experiment the dataset of the European building and construction
materials market for the Semantic Web (BauDataWeb, semantic.eurobau.com) has been
selected as a source ABox. It is based on the freeClass Ontology for construction and
building materials and services (www.freeclass.eu) that has been used as a source
ontology TBox. This ontology is defined using the GoodRelations Web Vocabulary for
E-Commerce (www.heppnetz.de/projects/goodrelations/) as its foundational level. The
web ontology for products and services eClassOWL5 (see also
www.heppnetz.de/projects/eclassowl/) which is also based on the GoodRelations has
been chosen as the target ontology. By choosing this pair of ontologies we model the
semantic data integration scenario in industries. Indeed, the BauDataWeb is a very big
and detailed set of assertions describing products for the construction industry. The
eClassOWL ontology is also the ontology of products but with a much broader scope.
The shortcoming of the eClassOWL is that it contains much less information about the
products for the construction industry than the BauDataWeb ontology. Having the
instances of BauDataWeb migrated to the eClassOWL enriches the eClassOWL
ontology. The BauDataWeb is structured in several increments that can be processed
separately. In total 100 increments of this ontology are available which contain over 60
million instances.

Maxim Davidovsky, Vadim Ermolayev, Vyacheslav Tolok

24

As the structural differences between the freeClass and the eClassOWL ontology
schemas are very simple and cause no problems in instance migration, the quality of
migration is not assessed in this experiment. We use this pair of ontologies for measuring
the computational performance of the Instance Migration Engine. The transformation
rules have been specified at the beginning of the experiment and remained unchanged in
all stages. A stage consisted in adding an increment of the BauDataWeb to the source
ABox and migrating the instances of the whole source ABox to the target ABox of the
eClassOWL ontology automatically by the Instance Migration Engine. We measured the
time spent for instance migration in each stage. The experiment has been run on a
conventional PC workstation with the configuration given in Table 9. The experiment has
been stopped after adding the 13-th increment because the memory requirements of the
running tool exceeded the available RAM. The results are presented in Table 10.

Table 9. The configuration of the hardware and software for the third experiment

Hardware

CPU
AMD Turion x2 dual-core mobile technology RM70 (2.0GHz, 1MB L2
cache)

RAM 3 GB DDR2

Operating System and Java Runtime Environment
Runtime Java(TM) SE Runtime Environment ver. 1.6.0_17-b04
Specification Java Platform API Specification ver. 1.6 by Sun Microsystems Inc.

VM
Java HotSpot(TM) Client VM - mixed mode by Sun Microsystems Inc.
ver. 14.3-b01

OS Windows Vista ver. 6.0, x86

Table 10. Instance Migration run times for BauDataWeb increments

Itera-
tion

No of
Instances

Runtime
(sec)

1 354 2
2 400 5
3 790 9
4 1289 13
5 2370 19
6 6323 26
7 9678 25
8 27013 41
9 142020 146

10 240849 253
11 849381 858
12 1607172 1753
13 2371245 Required

heap size
exceeds
available

RAM

Given the fact that the prototype Instance Migration Engine run on a conventional
workstation was capable of migrating over 1.6 million assertions before exceeding the
available RAM proves that the tool may be used in industrial settings. The performance

0

 200

 400

 600

 800

1,000

1,200

1,400

1,600

1,800

2,000

0 500,000 1,000,000 1,500,000 2,000,000
Number of instances

Time (sec.)

 Instance Migration between Ontologies Having Structural Differences

25

was also acceptable. As the chart shows, the run time increased almost linearly with the
number of migrated instances.

8. Discussion, Conclusions, and Future Work

A number of problems caused by various reasons have been faced in the reported
research and implementation work that have a common causal root – the lack of the
necessary information for transforming all the relevant instances in a correct way.
Instance migration problem is therefore substantially under-defined.

The provision of an explicit, correct and complete mapping of a source TBox to a
target TBox is not sufficient for devising a complete and correct transformation of the
corresponding assertional part. A characteristic example is the addition of a new relation
to a concept in the target ontology. The values of the respective object property shall be
added to the instances of the respective class. However we can not know the exact set of
individuals that have to be related. Therefore such a property is not added to all instances
in our approach.

A similar problem arises when the cardinality of a relation is changed. We cannot
know which particular instances have to be related to the individual having the property
with the changed cardinality. However it is known and could be specified in advance that
the set of particular instances of a given class have to have the relation to another specific
individual. Our approach allows specifying such an a priori knowledge explicitly in the
transformation rules. Moreover, the log of the migration problems is collected and
recorded at run time.

Another sort of migration problems arises because not all required OWL constructs
are considered at proper time. A good example case is when the two classes (A and B)
are defined as equivalent in the source ontology but they are not equivalent in the target
ontology. Based on equivalence axioms, if the instances of A have been migrated then the
instances of B have to be migrated as well. However, the removal of an equivalence
axiom in the target ontology may cause collisions for particular individuals. Our
approach assumes that all collisions of these sorts have to be explicitly resolved when the
changes are discovered and the transformation rules are specified.

Despite that our evaluation experiments proved that the software prototype performs
ontology instance migration correctly and completely if the problems mentioned above
are absent or the corresponding collisions are correctly resolved in the (refined)
transformation rules. The necessity of rule refinement is a good argument in favor of the
iterative approach in our methodology.

Yet another kind of problems is caused by the imperfection of the transformation
procedure, especially at manual steps. If a mistake is made at the step of structural change
discovery it will propagate to the transformation rules and further to the automated
migration. However the influence of such mistakes spans across one instance migration
process iteration only. The mistakes are reported in the migration log – so the knowledge
engineer may correct the rules for the subsequent iteration. Our experiments show that

Maxim Davidovsky, Vadim Ermolayev, Vyacheslav Tolok

26

even if there were some mistakes at manual steps of initial iterations, the final results still
were quite good.

Another important aspect is that the evaluation metrics for correctness and
completeness of the migration done by the software are not fully accurate in the sense
that they result in the measurements with values being lower than it could have been
estimated by manual analysis. In addition to that, the chosen metrics are not invariant to
the specificity of the test data. For example, Accuracy increases if the number of the
individuals liable to migration is considerably less than the total number of instances.
Precision and Recall metrics do not provide exact reflection on migration quality. High
Precision can be obtained at the expense of Recall by migrating only proper individuals
but minimizing the number of migrated instances. Similarly, high Recall can be achieved
by transferring all relevant instances that inevitably minimize Precision. Despite all the
imperfections of the chosen metrics we have decided to use those for making the results
(at least indirectly) comparable to the results of the one-shot automated ontology
alignment approaches documented by OAEI 200923.

In a summary it may be stated that the prototype OIM tool carries out instance
migration correctly based on the results of the test cases used in our first and second
evaluation experiments. In terms of correctness and completeness the results are
sufficiently good for attempting offering the tool for the use in industrial settings.
Simplicity, transparency, and validity may be mentioned as the highlights of the
developed methodology. The method and the prototype software tool allow conveniently
creating, editing, and processing instance migration rules. The methodology supported by
the tool also reduces the probability of errors at automated processing steps, which is
proven by the high values of Precision measurements. The lowlights of the proposed
approach are insufficient flexibility and strong correlation with the correctness of manual
specification of transformation rules. These lowlights can be mitigated by offering a
refined tool support for manual steps. For instance providing the means for semi-
automated structural change detection in the pair of ontologies may lower the chance for
manual mistakes at the preparatory steps. We have used our ODV tool for testing that.
Subsequently, automated generation of transformation rules may increase the quality of
the proposed approach. Both refinements of the current release of the software prototype
are planned for the future work on integrating our ODV and OIM tools in one tool suite.

In distributed settings, when different ontologies formalize partial knowledge of
different autonomous software agents about the same domain, a solution for ontology
instance migration may facilitate more effective and efficient collaboration of those
agents. Our approach is not directly applicable in these settings as it explicitly subsumes
the involvement of a human knowledge engineer. However some results that have been
reported in this article may be useful for implementing automated negotiations of
software agents about the harmonized meaning of ontological contexts in the approaches
like the one reported in Ermolayev et al.28 We plan to investigate the applicability of our
transformation patterns and rules as parts of argumentation in such negotiations among
software agents in the future.

 Instance Migration between Ontologies Having Structural Differences

27

Finally it has to be highlighted that, given the limits of the currently available
technologies, it is impossible to fully automate the whole process of ontology instance
migration. Therefore, the reduction of the proportion of the manual work is the only
feasible way of increasing the performance and quality of results in this important task of
ontology engineering and management. The development of a collaborative platform for
ontology engineering teams working on distributed ontologies is one more planned
direction of our future work.

Acknowledgements

Cadence Design Systems GmbH retains all the rights with respect to the software
mentioned in the paper, namely the ProjectNavigator and its plug-ins – ODV and OIM.
The authors would like to express their gratitude to the colleagues who helped in
choosing and provided the industrial ontologies for our experiments, namely to Univ.-
Prof. Dr. Martin Hepp and Dipl.-Ing. Andreas Radinger, E-Business and Web Science
Research Group, Universität der Bundeswehr München. The authors would also like to
thank the anonymous reviewers whose comments have helped to improve the article
substantially.

Reference List

1. V. Ermolayev, E. Jentzsch, N. Keberle and R. Sohnius, Performance Simulation Initiative. The
Suite of Ontologies v.2.0. Reference Specification. Technical Report PSI-ONTO-TR-2007-1,
(VCAD EMEA Cadence Design Systems, GmbH, 2007)

2. V. Ermolayev, E. Jentzsch, N. Keberle and R. Sohnius, Performance Simulation Initiative. The
Suite of Ontologies v.2.2. Reference Specification. Technical Report PSI-ONTO-TR-2007-5,
(VCAD EMEA Cadence Design Systems, GmbH, 2007)

3. V. Ermolayev, N. Keberle, W.-E. Matzke, An Upper Level Ontological Model for
Engineering Design Performance Domain, LNBIP, Vol.20, (Springer Berlin Heidelberg,
2008), pp.127-141.

4. R. Sohnius, E. Jentzsch, W.-E. Matzke, Holonic Simulation of a Design System for
Performance Analysis, in Holonic and Multi-Agent Systems for Manufacturing, Vol. 4659
(2007), (LNCS, Springer Berlin Heidelberg, 2007), pp.447-454

5. M. Hepp, Products and Services Ontologies: A Methodology for Deriving OWL Ontologies
from Industrial Categorization Standards, in Int'l Journal on Semantic Web & Information
Systems, 2(1), (2006), pp.72-99

6. O. Corcho, M. Fernández-López, A. Gómez-Pérez, Methodologies, tools and languages for
building ontologies: where is their meeting point?, in Data & Knowledge Engineering, Vol.
46, Issue 1, (2003), pp.41 – 64

7. O. Corcho, M. Fernández-López, A. Gómez-Pérez, Ontological Engineering: Principles,
Methods, Tools and Languages, in Ontologies for Software Engineering and Software
Technology. (Springer Berlin Heidelberg, 2006), pp.1-48

8. M. Fernandez-Lopez, A. Gómez-Pérez et al, A survey on methodologies for developing,
maintaining, evaluating and reengineering ontologies, Deliverable 1.4. (OntoWeb, 2002)

9. D. Nardi, R. J. Brachman: An Introduction to Description Logics. In: F. Baader, D. Calvanese,
D. L. McGuinness, D. Nardi, P. F. Patel-Schneider (eds.) The Description Logic Handbook,
(Cambridge University Press New York, NY, USA, 2007)

Maxim Davidovsky, Vadim Ermolayev, Vyacheslav Tolok

28

10. V. Ermolayev, A. Copylov, N.Keberle, E. Jentzsch, W.-E. Matzke, Using Contexts in
Ontology Structural Change Analysis, in CEUR-WS, Vol. 626 (2010), eds. V. Ermolayev, J.-
M. Gomez-Perez, P. Haase, P. Warren, (CIAO, 2010)

11. B. Henderson-Sellers, C. Gonzalez-Perez, Standardizing Methodology Metamodelling and
Notation: An ISO Exemplar, in UNISCON 2008, eds. R. Kaschek, C. Kop, C. Steinberger, G.
Fliedl, LNBIP, Vol. 5, (Springer, Berlin/Heidelberg, 2008), pp.1-12

12. V. Vladimirov, R. Sohnius, V. Ermolayev, W.-E. Matzke, Semi-Automated Instance
Migration between Evolving Ontologies, in Special Issue: System Analysis, Management, and
IT, Herald of NTU KhPI, No 7, (2007), pp.130-144

13. M. Davidovsky, V. Ermolayev, W.-E. Matzke, V. Tolok, Evaluation of Semi-Automated
Ontology Instance Migration, in Intelligent Distributed Computing IV, SCI 315, eds. M.
Essaaidi et al., (Springer Berlin/Heidelberg 2010), pp.179-190

14. M. Davidovsky, V. Ermolayev, Performance Simulation Initiative. Ontology Instance
Migration. Report, (Cadence Design Systems, GmbH, 2009)

15. L. Serafini, A. Tamilin Instance Migration in Heterogeneous Ontology Environments, LNCS,
Vol. 4825 (2007)

16. A. Maedche, B. Motik, L. Stojanovic, Managing multiple and distributed ontologies on the
SemanticWeb., VLDB, No. 12, (Springer, 2003) pp.286-302

17. M. Klein, A. Kiryakov, D. Ognyanov et al, Ontology versioning and change detection on the
Web, in Proc. of EKAW-2002, (Siguenza, Spain, 2002) pp.197–212

18. T. Gruber, Ontolingua: A Translation Approach to Providing Portable Ontology Specifcations,
in Knowledge Acquisition, (1993) 5(2):199-220

19. H. Chalupsky, Ontomorph: A translation system for symbolic logic, in Proc. Int'l. Con. on
Principles of Knowledge Representation and Reasoning, (Morgan Kaufmann, San Francisco,
2000), pp.471-482

20. D. Dou, D. McDermott, P. Qi, Ontology Translation on the Semantic Web, in The Journal on
Data Semantics, (2005)3360:35–57

21. J. Euzenat, P. Shvaiko, Ontology Matching, (Springer Verlag, Berlin Heidelberg, 2007)
22. J. Euzenat, A. Ferrara, Ch. Meilicke, J. Pane, F. Scharffe, P. Shvaiko, H. Stuckenschmidt, O.

Šváb-Zamazal, V. Svátek, C. Trojahn dos Santos, Results of the Ontology Alignment
Evaluation Initiative 2010, in 5th International Workshop on Ontology Matching (OM-2010),
(2010), http://ceur-ws.org/Vol-689

23. J. Euzenat, A. Ferrara, L. Hollink, A. Isaac, C. Joslyn, V. Malaisé, Ch. Meilicke, A. Nikolov,
J. Pane, M. Sabou, F. Scharffe, P. Shvaiko, V. Spiliopoulos, H. Stuckenschmidt, O. Šváb-
Zamazal, V. Svátek, C. Trojahn dos Santos, G. Vouros and Sh. Wang, Results of the Ontology
Alignment Evaluation Initiative 2009, in 4th International Workshop on Ontology Matching
(OM-2009), (2009), http://ceur-ws.org/Vol-551

24. N. Fridman Noy, M. A. Musen, PROMPTDIFF: A Fixed-Point Algorithm for Comparing
Ontology Versions, AAAI/IAAI, (2002), pp.744-750

25. C. Drumm et al, QuickMig - Automatic Schema Matching for Data Migration Projects,
(ACM, NY, 2007), pp.107-116

26. H. H. Do, S. Melnik, E. Rahm, Comparison of Schema Matching Evaluations, LNCS, Vol.
2593, (Springer Berlin Heidelberg, 2009), pp.221-237

27. Ch. D. Manning, P. Raghavan, H. Schutze, Introduction to Information Retrieval, (Cambridge
University Press, NY, 2008)

28. V. Ermolayev, N. Keberle, W.-E. Matzke, V. Vladimirov, A Strategy for Automated Meaning
Negotiation in Distributed Information Retrieval, in ISWC 2005 Proc. 4th Int. Semantic Web
Conference, LNCS 3729, eds. Y. Gil et al., (Springer Berlin/Heidelberg 2005), pp. 201-215

